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Abstract 

Protein language models (pLMs) trained on a large corpus of protein sequences ha v e sho wn unprecedented scalability and broad generaliz- 
ability in a wide range of predictive modeling tasks, but their po w er has not yet been harnessed for predicting protein–nucleic acid binding 
sites, critical for characterizing the interactions between proteins and nucleic acids. Here, we present EquiPNA S , a new pLM-informed E(3) 
equivariant deep graph neural network framework for improved protein–nucleic acid binding site prediction. By combining the strengths of pLM 

and symmetry -a w are deep graph learning, EquiPNAS consistently outperforms the state-of-the-art methods for both protein–DNA and protein–
RNA binding site prediction on multiple datasets across a diverse set of predictive modeling scenarios ranging from using experimental input 
to AlphaFold2 predictions. Our ablation study re v eals that the pLM embeddings used in EquiPNAS are sufficiently po w erful to dramatically re- 
duce the dependence on the a v ailability of e v olutionary inf ormation without compromising on accuracy, and that the symmetry -a w are nature of 
the E(3) equivariant graph-based neural architecture offers remarkable robustness and performance resilience. EquiPNAS is freely a v ailable at 
https:// github.com/ Bhattacharya-Lab/ EquiPNAS . 
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ntroduction 

nteraction of protein with deoxyribonucleic acid (DNA) and
ibonucleic acid (RNA) underpins a wide range of cellular and
volutionary processes such as gene expression, regulation,
nd signal transduction ( 1–4 ). The identification of the inter-
ction sites between proteins and nucleic acids (i.e. binding
ites) is important for determining protein functions ( 5 ) and
ovel drug design ( 6 ). A number of computational methods
or predicting protein–DNA and protein–RNA binding sites
ave been developed to overcome the challenges of lengthy
nd expensive nature of experimental characterization of
rotein–nucleic acid binding sites. Such computational meth-
ds can be broadly categorized into two categories: sequence-
ased and structure-aware methods. Sequence-based methods
uch as SVMnuc ( 7 ), NCBRPred ( 8 ), DNAPred ( 9 ), DNA-
enie ( 10 ), RNABindRPlus ( 11 ), ConSurf ( 12 ), TargetDNA
 13 ), SCRIBER ( 3 ) and TargetS ( 14 ) exploit readily available
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and abundant protein sequence information to predict bind-
ing sites. However, these methods lack structural information,
which can limit their prediction accuracy. To overcome the
challenge, structure-aware methods such as COACH-D ( 15 ),
NucBind ( 7 ), DNABind ( 16 ), DeepSite ( 17 ), aaRNA ( 18 ), Nu-
cleicNet ( 19 ), GraphBind ( 20 ), and GraphSite ( 21 ) integrate
available structural information for binding site prediction.
While structure-aware methods usually achieve higher predic-
tion accuracy than sequence-based methods, a vast majority
of structure-aware methods rely on known structural infor-
mation from the Protein Data Bank (PDB) ( 22 ) that are not as
abundant as sequence information, limiting their large-scale
applicability. 

Promisingly, the recent breakthrough of AlphaFold2
( 23 ,24 ) has enabled highly accurate prediction of single-
chain protein structures from sequence information, provid-
ing new opportunities for replacing the experimentally solved
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Figure 1. Illustration of the EquiPNAS method for protein–nucleic acid binding site prediction. ( A ) A set of node and edge features are generated from 

the input protein monomer. ( B ) E(3)-equivariant graph convolutions are employed on the featurized graph representation of the input. ( C ) Graph node 
classification is performed for residue-level binding site prediction. 
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structures with AlphaFold2-predicted structural models as
input for binding site prediction at scale, without compro-
mising on accuracy. While a recent protein–DNA binding
site prediction method, GraphSite ( 21 ), has successfully used
AlphaFold2-predicted protein structural models, effective uti-
lization of predicted structures from AlphaFold2 for protein–
RNA binding site prediction is yet to be explored. Along-
side the AlphaFold2 breakthrough, a significant advancement
has been made in pre-trained protein language models (pLM)
( 25–30 ) powered by attention-based transformers networks
( 31 ). pLMs have proven highly successful in various predictive
modeling tasks including protein structure prediction ( 28 ,30 ),
protein function prediction ( 26 ,29 ), and protein engineering
( 27 , 32 , 33 ). Despite their usefulness, the potential of pLMs in
protein–DNA and protein–RNA binding site prediction tasks
remains to be unlocked. Given the recent progress, a natural
question arises: can we develop a generalizable computational
framework that can harness the power of pLMs while lever-
aging the predicted structural information by AlphaFold2 for
accurate prediction of protein–DNA and protein–RNA bind-
ing sites at scale? 

Here, we present EquiPNAS, a new pLM-informed equiv-
ariant deep graph neural network framework for accurate
protein–nucleic acid binding site prediction. EquiPNAS effec-
tively leverages the pLM embeddings derived from the ESM-
2 model ( 30 ) for improved protein–DNA and protein–RNA
binding site prediction. The core of EquiPNAS consists of an
E(3) equivariant graph neural network architecture ( 34 ), em-
ploying symmetry-aware graph convolutions that transform
equivariantly with translation, rotation, and reflection in 3D
space. Such an architecture has recently been shown to of-
fer substantial accuracy gain while exhibiting remarkable ro-
bustness and performance resilience in our work on protein–
protein interaction site prediction ( 35 ). Inspired by the notable
successes of pLMs ( 32 ,36–38 ), here we integrate pLM embed-
dings from the encoder-only transformer architecture of ESM-
2 to refine our sequence-based node features using the E(3)
equivariant graph-based framework. By doing this, we are
able to significantly reduce the dependence on the availabil-
ity of evolutionary information which is not always abundant
such as with orphan proteins or rapidly evolving proteins, thus
enabling us to build generalizable and scalable models. In ad-
dition, our translation-, rotation-, and reflection-equivariant
deep graph learning architecture provides richer representa- 
tions for molecular data compared to invariant convolutions,
offering robustness for graph structured data and particularly 
suitable when predicted protein structures are used as input 
( 35 ). 

Our method, EquiPNAS, consistently outperforms the 
state-of-the-art methods in several widely used benchmark- 
ing datasets for both protein–DNA and protein–RNA binding 
site prediction tasks. EquiPNAS exhibits remarkable robust- 
ness with only a minor performance decline when switching 
from experimental structures to AlphaFold2 predicted struc- 
tural models as input, enabling accurate prediction of protein–
DNA and protein–RNA binding sites at scale. The pLM em- 
beddings used in EquiPNAS are sufficiently powerful that can 

dramatically reduce the dependence on the availability of evo- 
lutionary information, leading to a generalizable framework.
In addition, the symmetry-aware nature of the E(3) equivari- 
ant graph-based neural architecture of EquiPNAS offers re- 
markable robustness and performance resilience, as verified 

directly through our ablation study. An open-source software 
implementation of EquiPNAS, licensed under the GNU Gen- 
eral Public License v3, is freely available at https://github.com/ 
Bhattacharya-Lab/EquiPNAS . 

Materials and methods 

Overview of EquiPNAS framework 

Figure 1 illustrates our EquiPNAS method for protein–nucleic 
acid binding site prediction consisting of graph representa- 
tion and featurization, E(3) equivariant graph neural network 

leveraging the coordinate information extracted from the in- 
put monomer together with sequence- and structure-based 

node and edge features as well as pLM embeddings from the 
ESM-2 model, and performing graph node classification to 

predict the probability of every residue in the input monomer 
to be a protein–nucleic acid binding site. 

Graph representation and feature generation 

Input protein graph representation 

We represent the input protein monomer as a graph G = 

( V, E ) , where each node v ∈ V represents a residue, and each 

edge e ∈ E represents an interacting residue pair. We consider 

https://github.com/Bhattacharya-Lab/EquiPNAS
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Table 1. Sequence-based node features 

Features [shape] Description 

aa [L, 20] One-hot encodings of 20 amino acid residue 
types. 

PSSM [L, 20] Normalized position specific scoring matrix 
(PSSM). 

MSA [L, 256] Multiple sequence alignment (MSA) 
representation distilled through ColabFold’s 
EvoFormer blocks. 

pLM [L, 5120] pLM embeddings from ESM-2 with 15B 

parameters. 

The shape of the corresponding type for a protein with L residues is shown 
next to each feature. 
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Table 2. Str uct ures-based node feat ures 

Features [shape] Description 

SS [L, 11] One-hot encodings of 3- and 8-state 
secondary structure. 

R S A [L, 10] One-hot encodings of 2- and 8-state 
relevant solvent accessibility. 

Local geometry 
[L, 11] 

Cosine angle between the C = O of 
consecutive residues, normalized values of 
virtual bond and torsion angles, and 
normalized peptide backbone torsion 
angles. 

Residue orientation 
[L, 9] 

Unit vectors pointing towards the 
directions of C α

( i +1) −C α
i , C α

( i −1) −C α
i 

and C β
i −C α

i . 
Relative residue 
positioning [L, 2] 

Two types of relative positional features 
for the i th residue: (i) inverse of i 
representing the relative sequence position, 
and (ii) inverse of the Euclidean distance of 
C α atom from the centroid representing 
the relative spatial positioning. 

Residue virtual 
surface area [L, 1] 

Virtual surface area of the conceptual 
convex hull constructed by the atoms in a 
residue. 

Contact count [L, 1] The number of spatial neighbors of each 
residue. 

The shape of the corresponding type for a protein with L residues is shown 
next to each feature. 
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 residue pair to be interacting if their C α–C α Euclidean dis-
ance is within 14Å for protein–DNA binding site prediction
nd 15Å for protein–RNA binding site prediction. The spe-
ific distance cut-offs are chosen through independent cross-
alidations for the protein–DNA and protein–RNA binding
ite tasks ( Supplementary Tables 1 and 2 ). We additionally
se a minimum sequence separation of 6 for the interacting
esidue pairs to focus on longer-range interactions. 

eature generation 

e use a number of standard sequence-derived node features
ncluding amino acid residue type, position specific scoring
atrix (PSSM), multiple sequence alignment (MSA) and com-
ine them with protein language model-based features from
SM-2 pLM. Additionally, we extract structure-derived node

eatures from the input protein monomer, using either the ex-
erimentally solved structure or AlphaFold2-predicted struc-
ural model, including secondary structure (SS), relative sol-
ent accessibility (R S A), local geometry, residue orientations,
elative residue positioning, residue virtual area and contact
ount. 

equence-based node features 
n overview of sequence-based node features and the corre-

ponding shape can be found in Table 1 . We use one-hot en-
oding to represent each of the 20 amino acid residue types
aa) as a binary vector with 20 entries. We run PSI-BLAST ( 39 )
n UniRef90 database ( 40 ) to obtain position specific scoring
atrix (PSSM). We then extract the first 20 columns of the
SSM and normalize the values using the sigmoidal function.
e additionally generate multiple sequence alignment (MSA)

rom the input amino acid sequence by running ColabFold
 41 ) pipeline, which uses MMseq2 ( 42 ) for MSA generation.
he generated MSA is then fed to the EvoFormer blocks of
lphaFold2 as implemented in the ColabFold pipeline, result-

ng in a distilled MSA representation encoded as a dictionary.
e extract the first row of the distilled MSA representation

‘msa_first_row’ from the dictionary) to be used as our MSA
eature. We also use protein language model-based features
rom the pretrained ESM-2 model, having 15B parameters
 30 ). Specifically, we use the ‘representations’ embeddings as
LM features by supplying the amino acid sequence to the
SM-2 model. 

tructure-based node features 
ur structure-based node features and the corresponding

hape can be found in Table 2 . We use one-hot encoding
o represent both 3-state and 8-state secondary structures
(SS). Additionally, we use one-hot-encodings to represent both
2-state relative solvent accessibility (R S A) features using an
R S A cut-off of 50 and finer-grained 8-state R S A features
by discretizing the R S A value into 8 bins with the follow-
ing ranges: 0–30, 30–60, 60–90, 90–120, 120–150, 150–180,
180–210 and > 210. We also extract local geometric features
directly from the input protein monomer. These include the
cosine angle between the C = O of consecutive residues, nor-
malized virtual bond and torsion angles formed between con-
secutive C α atoms, and normalized backbone torsion angles
of the polypeptide chain. Inspired by the recent GVP-GNN
study ( 43 ), we adopt two types of residue orientation features
in our study: (i) unit vectors pointing towards C α

( i +1) −C α
i and

C α
( i −1) −C α

i , and (ii) unit vectors indicating the imputed di-
rection of C βi −C α

i , which is computed assuming tetrahedral
geometries and normalization. We use two types of relative
residue positioning features for the i th residue of the input
protein monomer: (i) the relative sequence position captured
by the inverse of i , and (ii) the relative spatial positioning cap-
tured by the inverse of the Euclidean distance between the cen-
troid of the input protein monomer and the C α atom of the i th
residue. We additionally conceptualize an amino acid residue
as a virtual convex hull that is constructed by its constituent
atoms and quantify the virtual surface area of the convex hull
and calculate its inverse to use as a feature. Finally, we include
the normalized contact count as a structure-driven feature, de-
fined as the number of spatial neighbors of each residue (i.e.
residues that are in contact) where two residues are consid-
ered to be in contact if the Euclidean distance between their
C β atoms is < 8 Å. 

Edge features 
As the edge feature for the graph G = ( V, E ) , we use the ratio
of the logarithm of the absolute difference between the indices
of the two residues ( log | i − j | ) in the primary sequence and

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
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how far apart the two residues are in the primary sequence,
while the denominator measures their spatial distance in
3D space. 

Coordinate features 
We obtain coordinate features from the Euclidean coordinates
( x , y and z ) of the C α atoms in input protein monomers. 

Network architecture 

Our network architecture consists of deep E(3)-equivariant
graph neural networks (EGNNs) ( 34 ), independently trained
for protein–DNA and protein–RNA binding site prediction
tasks. The input to the EGNNs includes the node and edge
features described above as well as coordinate features based
on the Cartesian coordinates of the C α atoms in the input pro-
tein monomer. The EGNN architecture consists of a stack of
equivariant graph convolution layers (EGCL), performing a
series of transformations of its input by updating the coordi-
nate and node embeddings using the edge information and the
coordinate and node embeddings from the previous layer. A
linear transformation is first applied to the input node features
( h 

0 
i ), which results in a transformed set of node embeddings

( h 

l 
i ). These embeddings, along with input coordinates ( x 

0 
i ) and

edge information ( a i j ) are passed to the subsequent EGCL lay-
ers. Formally, each EGCL performs a coordinate and node em-
beddings update, such that x 

l+1 
i , h 

l+1 
i = EGCL [ x 

l 
i , h 

l 
i ] , which

is defined below: 

m i j = φe 

(
h 

l 
i , h 

l 
j , ‖ x 

l 
i − x 

l 
j ‖ 

2 
, a i j 

)

x 

l+1 
i = x 

l 
i + C 

∑ 

j � = i 

(
x 

l 
i − x 

l 
j 

)
φx 

(
m i j 

)

m i = 

∑ 

j � = i 

m i j 

h 

l+1 
i = φh 

(
h 

l 
i , m i 

)

where, h 

l 
i and h 

l 
j are the node embeddings of node i and j at

layer l , respectively; a i j denotes the edge attributes; x 

l 
i and x 

l 
j

are the coordinates of node i and j at layer l , respectively;

‖ x 

l 
i − x 

l 
j ‖ 

2 
is the squared distance between node i and j at

layer l ; φe , φx , and φh are non-linear operations, implemented
using multilayer perceptrons (MLP); and C is a constant fac-
tor chosen as 1 / ( M − 1), where M is the number of nodes.
The EGCL operation attains equivariance by incorporating
the coordinate update during message passing, wherein for
each node i , 

∑ 

j � = i 
( x 

l 
i − x 

l 
j ) is the sum of its relative coordinate

difference with all the other nodes, are taken into account for
updating the coordinate x 

l+1 
i of node i at layer l + 1. We also

use an attention mechanism 

˜ e i j = φin f ( m i ) to infer a soft es-
timation of edges. Finally, a linear transformation is applied
to squeeze the hidden dimension of the last EGCL for con-
densing the learned information into a single scalar value, fol-
lowed by a sigmoidal function to obtain the node-level classi-
fication to predict the likelihood of every residue in the input
monomer to be a protein–nucleic acid binding site. The ar-
chitecture of our EGNN consists of 12 EGCL layers with hid-
den dimensions of 768. The size of hidden dimensions and the
number of layers are selected through 5-fold cross-validation
(see Supplementary Table 1 , 2 ). To mitigate the risk of overfit- 
ting, we apply dropout regularization to the node embeddings 
of each EGCL layer with a dropout rate of 0.1, determined 

through 5-fold cross validation (see Supplementary Table 1 ,
2 ). Our EquiPNAS models are implemented using PyTorch 

1.12.0 ( 44 ) and the Deep Graph Library (DGL) 0.9.0 ( 45 ).
During training, we use the binary cross-entropy loss function 

and a cosine annealing scheduler from the Stochastic Gradient 
Descent with Warm Restarts (SGDR) algorithm ( 46 ). We also 

utilize the ADAM optimizer ( 47 ), with a learning rate of 1e-4 

and a weight decay of 1e-16. The training process consists of 
at most 40 epochs on an NVIDIA A40 GPU. In addition to the 
full-fledged version of EquiPNAS, we train baseline models for 
both protein–DNA and protein–RNA binding site prediction 

using the same hyperparameters and features as EquiPNAS,
but without equivariant updates, that is, invariant baseline 
networks with the coordinate updates of the EGCL turned 

off, enabling us to verify the importance of equivariance used 

in our model. 

Datasets and performance evaluation 

For a fair performance comparison of our method against 
the state-of-the-art methods for protein–DNA and protein–
RNA binding site prediction, we use widely recognized public 
datasets as follows. 

Protein–DNA benchmarking dataset 
To evaluate the performance of protein–DNA binding site pre- 
diction method, we use train (Train_573) and test (Test_129) 
datasets from the published work of GraphBind ( 20 ), which 

contain a total of 573 and 129 protein chains, respectively.
Additionally, we use another test set consisting of 181 pro- 
tein chains (Test_181) from the published work of Graph- 
Site ( 21 ). These datasets are originally curated from the pub- 
lic BioLiP database ( 48 ) that contains precomputed protein–
DNA and protein–RNA binding sites from known protein–
DNA and protein–RNA complexes after filtering out protein 

chains with > 30% sequence similarity among the datasets,
by applying CD-Hit ( 49 ) to ensure non-redundancy. The 
training dataset (Train_573) was released before 6 January 
2016 whereas the Test_129 set was released between 6 Jan- 
uary 2016 to 5 December 2018, and Test_181 was more re- 
cently released between 6 December 2018 to August 2021.
The binding (and non-binding) residue count for Train_573,
Test_129 and Test_181 are 14 479 (and 145 404), 2240 (and 

35 275) and 3208 (and 72 050), respectively. 

Protein–RNA benchmarking dataset 
To evaluate the performance of protein–RNA binding site pre- 
diction method, we use the Train_495 set for training and 

the Test_117 set for testing, also from the published work 

of GraphBind ( 20 ), which contain a total of 495 and 117 

protein chains, respectively. These datasets are also extracted 

from the BioLiP database ( 48 ) and pre-processed to ensure 
non-redundancy between the train and test sets, using CD-Hit 
( 49 ) to filter out protein chains with > 30% sequence similar- 
ity. The Train_495 set contains 14 609, and 122 290 binding,
and non-binding residues, respectively, while in the Test_117 

set, 2031 and 35 314 residues are binding, and non-binding 
residues, respectively. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
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Table 3. Protein-DNA and protein–RNA binding site prediction performance of EquiPNAS against the top-performing methods on the test datasets using 
AlphaFold2 predicted str uct ural models as input. Values in bold represent the best performance 

Datasets Methods R OC-A UC PR-AUC 

Protein–DNA Test_129 GraphBind* 0.916 0.497 
GraphSite* 0.934 0.544 
EquiPNAS 0.940 0.569 

Test_181 GraphBind* 0.893 0.317 
GraphSite* 0.917 0.369 
EquiPNAS 0.918 0.384 

Protein–RNA Test_117 GraphBind 0.793 0.204 
EquiPNAS 0.886 0.320 

Note: * Results are obtained directly from the published work of GraphSite. 

E
W  

r  

C  

P  

P  

i  

o  

t
 

m  

S  

b  

N  

(  

t  

P  

P  

(  

s  

m  

s  

i  

d  

a  

t  

i  

e  

g  

m  

r  

p
 

m  

A  

o  

(  

s  

G  

p  

P  

a  

i  

h  

v  

i  

t  

t  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/5/e27/7590918 by guest on 14 M

ay 2024
valuation metrics and competing methods 
e assess the performance of our method using two widely

ecognized metrics: the area under the Receiver Operating
haracteristic curve (ROC-AUC) and the area under the
recision-Recall curve (PR -A UC) scores. Both ROC-A UC and
R -A UC are threshold-independent metrics, thereby provid-
ng a comprehensive and robust view of the performance
f a model across the full range of possible classification
hresholds. 

We compare our protein–DNA interaction site prediction
ethod against eight existing methods. Three of the methods,

VMnuc ( 7 ), NCBRPred ( 8 ), and DNAPred ( 9 ), are sequence-
ased methods, while the other five methods, COACH-D ( 15 ),
ucBind ( 7 ), DNABind ( 16 ), GraphBind ( 20 ) and GraphSite

 21 ) are structure-aware methods. SVMnuc is a support vec-
or machine (SVM)-based method that utilizes features from
SI-BLAST ( 39 ), PSIPRED ( 50 ) and HHblits ( 51 ). NCBR-
red employs bidirectional Gated Recurrent Units (BiGRU)
 52 ) with multi-label sequence labeling. DNAPred is a two-
tage ensembled hyperplane-distance-based support vector
achine (E-HDSVM) ( 9 ) for predicting protein–DNA binding

ites. COACH-D is a consensus-based approach incorporat-
ng four different template-based and one template-free pre-
iction methods. NucBind integrates the ab initio SVMnuc
nd template-based COACH-D for higher accuracy predic-
ion. DNABind is a hybrid method combining machine learn-
ng with template-based predictions. GraphBind proposes hi-
rarchical graph neural networks, while GraphSite employs
raph transformer neural networks. Among these competing
ethods, GraphBind and GraphSite are the most recent and

epresent the state-of-the-art for protein–DNA binding site
rediction. 
We compare our protein–RNA binding site prediction
ethod with seven existing methods. Two of the methods RN-
BindRPlus ( 11 ) and SVMnuc ( 7 ) are sequence-based meth-
ds, while the other five methods, COACH-D ( 15 ), NucBind
 7 ), aaRNA ( 18 ), NucleicNet ( 19 ) and GraphBind ( 20 ) are
tructure-aware methods. SVMnuc, CO ACH-D , NucBind and
raphBind are the methods we also compared against on
rotein–DNA binding tasks, as discussed earlier. RNABindR-
lus is a hybrid method that combines sequence-homologs
nd support vector machine (SVM)-based predictions. aaRNA
s a both sequence- and structure-based method that utilizes
omology modeling to extract structural features along with
arious sequence-based features. NucleicNet is a deep learn-
ng framework that extracts physiochemical characteristics of
he protein surface by quantifying it with grid points. Among
hese methods, GraphBind is currently the top-performing
ethod for protein–RNA binding site prediction. 
 

Results 

Test set performance 

Table 3 shows the performance of EquiPNAS for protein–
DNA (on Test_129 and Test_181 sets) and protein–RNA (on
Test_117) binding site prediction tasks using AlphaFold2 pre-
dicted structural models as input compared to two closest
competing methods: hierarchical graph neural network-based
method GraphBind for protein–DNA and protein–RNA bind-
ing site prediction ( 20 ) and graph transformer-based method
GraphSite for protein–DNA binding site prediction ( 21 ) (see
Supplementary Table 3 and Supplementary Table 4 for com-
prehensive performance comparison against all competing
methods). The results demonstrate that EquiPNAS attains
the highest scores in all three test datasets. The performance
gain of EquiPNAS over the state-of-the-art methods is par-
ticularly noteworthy considering PR -A UC, a stringent and
rigorous evaluation metric. For example, EquiPNAS yields
56.9% relative PR -A UC gain over GraphBind for protein–
RNA binding site prediction; and 14.5%-21.1% relative PR-
AUC gains over GraphBind and 4.1–4.6% relative PR -A UC
gains over GraphSite for protein–DNA binding site predic-
tion. In summary, EquiPNAS improves upon the state-of-the-
art accuracy of both protein–DNA and protein–RNA binding
site prediction using AlphaFold2 predicted structural models
by consistently attaining better performance than the existing
approaches. 

To investigate whether the performance attained by EquiP-
NAS is significantly better than the closest competing methods
GraphSite and GraphBind, we conduct statistical significance
tests by randomly sampling 70% of the targets for each of the
test sets (T est_129, T est_181, and T est_117) and calculating
the ROC-A UC and PR -A UC for the EquiPNAS as well as the
other competing methods. This sampling process is repeated
10 times, yielding a set of 10 scores for EquiPNAS, GraphSite,
and GraphBind for protein–DNA binding site prediction for
both Test_129 and Test_181 sets, and a set of 10 scores for
EquiPNAS and GraphBind for protein–RNA binding site pre-
diction for Test_117 set. If the measurement is normal, deter-
mined by the Anderson-Darling test ( 53 ), then paired t-test is
used to calculate significance of the measurement. If the mea-
surement is not normal, then we use the Wilcoxon rank sum
test ( 54 ). The results presented in Table 4 demonstrate that
EquiPNAS is statistically significantly better than the compet-
ing methods at 95% confidence level with p -values < 0.05
for both ROC-A UC and PR -A UC metrics across all test
sets. 

Figure 2 presents nine representative examples from the test
datasets comparing the protein–DNA and protein–RNA bind-
ing site predictions using EquiPNAS against the second-best

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
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Table 4. Statistical significance test between EquiPNAS and the top-performing methods using AlphaFold2 predicted str uct ural models as input on the 
test datasets by randomly sampling 70% of the targets for each of the test sets and repeating the sampling process 10 times 

Datasets Methods R OC-A UC PR-AUC 

Protein–DNA Test_129 GraphBind 0.9128 ± 0.008929352 0.492 ± 0.031184042 
P -value 2.22591E-06 7.07626E-10 
GraphSite 0.9219 ± 0.005363457 0.5165 ± 0.022122136 
P -value 1.3961E-09 7.92445E-08 
EquiPNAS 0.9387 ± 0.004877385 0.569 ± 0.0264281 

Test_181 GraphBind 0.8916 ± 0.006003703 0.3102 ± 0.017706245 
P -value 8.63327E-08 7.16361E-09 
GraphSite 0.8964 ± 0.006292853 0.3286 ± 0.018124262 
P -value 2.25585E-07 7.9832E-07 
EquiPNAS 0.9159 ± 0.00395671 0.3717 ± 0.018372987 

Protein–RNA Test_117 GraphBind 0.7942 ± 0.006250333 0.2019 ± 0.009573691 
P -value 2.3402E-11 1.44E-10 
EquiPNAS 0.8856 ± 0.006221825 0.3118 ± 0.013003 

The means and the standard deviations of ROC-AUC and PR-AUC are reported. Values in bold represent the best performance in terms of means. 
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predictors: three from protein–DNA Test_129 (Figure 2 A),
three from protein–DNA Test_181 (Figure 2 B) and three from
protein–RNA Test_117 (Figure 2 C). The first two examples
represent two human protein–DNA interactions: Transcrip-
tion of Homo sapiens, Mus musculus (PDB ID: 5nj8, chain
A), and Hydrolase / DNA of Homo sapiens, DNA launch vec-
tor pDE-GFP2 (PDB ID: 5t4i, chain B) as shown in Figure
2 A. GraphSite fails to predict the vast majority of protein–
DNA binding sites as reflected in its low F1-score, Matthew’s
Correlation Coefficient (MCC) and PR -A UC in these two tar-
gets. In contrast, EquiPNAS achieves reasonably accurate pre-
diction, with a remarkable gain of 0.506 and 0.417 points
in F1-score, 0.458 and 0.357 points in MCC, and 0.381
and 0.381 points in PR -A UC, respectively. The third exam-
ple, Splicing of Caenorhabditis elegans, synthetic construct
(PDB ID: 5tkz, chain A) shows inaccurate binding site pre-
diction by GraphSite, resulting in predicting five (out of total
89 residues), which is noticeably high compared to the size of
the protein. EquiPNAS accurately predicts these binding sites,
with only one (out of total 89 residues) false positive. Graph-
Site also generates inaccurate predictions for DNA binding
protein / DNA in Escherichia coli (PDB ID: 6nua, chain A),
with 28 (out of total 227 residues) false positives; whereas
EquiPNAS achieves a much better overall prediction perfor-
mance with only three (out of total 227 residues) false posi-
tives. Interestingly, EquiPNAS attains perfect prediction with
both ROC-AUC and PR-AUC values of 1.0, as well as an F1-
score and MCC of approximately 0.93 for a smaller target
(73 residues), a transcription protein in Mycobacterium tu-
berculosis (PDB ID: 7kuf chain A). In contrast, GraphSite’s
prediction is contaminated by several false positives, result-
ing in F1-score and MCC values of less than 0.65. Addi-
tionally, for an RNA binding protein / DNA in Homo sapi-
ens (PDB ID: 7csz, chain A), our method still outperforms
GraphSite, with a performance gain of 0.27 points in PR-
AUC, 0.187 points in F1-score, and 0.216 points in MCC,
whereas GraphSite fails to identify majority of binding site
residues, particularly for DNA chain C, resulting in a high
number of false negatives. The RNA binding protein exam-
ple in Danio rerio and Caenorhabditis elegans (PDB ID: 6fq3,
chain A) provides a remarkable demonstration of the supe-
rior performance of EquiPNAS in predicting protein–RNA
binding sites, as compared to the closest competing method
GraphBind. While GraphBind fails to accurately detect any
binding site, with PR -A UC, F1-score and MCC of 0.024, 0 

and −0.017, respectively, EquiPNAS performs reasonably ac- 
curate predictions with much better PR -A UC, F1-score, and 

MCC of 0.732, 0.545 and 0.555, respectively. Furthermore,
EquiPNAS shows highly accurate prediction for the transcrip- 
tion factor in Saccharomyces cerevisiae (PDB ID: 5o1y, chain 

A), exceeding GraphBind by 0.351 points in F1-score, 0.382 

points in MCC and 0.303 points in PR -A UC. Additionally,
in comparison to EquiPNAS, GraphBind exhibits suboptimal 
performance due to both false positive and false negative pre- 
dictions for the binding sites of OXIDOREDUCTASE / RNA 

in Escherichia coli (PDB ID: 5hr7, chain B). 
In the above experiments, all methods use AlphaFold2 

predicted structural models as input with EquiPNAS con- 
sistently delivering improved performance for both protein–
DNA and protein–RNA binding site prediction tasks. How- 
ever, structure-aware protein–nucleic acid binding site pre- 
diction methods traditionally rely on experimentally solved 

structures as input. Intuitively, using experimental structures 
as input, whenever available, should lead to better perfor- 
mance than using predicted structural models as input. Conse- 
quently, a natural question to ask is: How much performance 
decline do these methods suffer from when switching from 

experimental input to prediction? Not surprisingly, as shown 

in Supplementary Tables 3 and 4 , using experimental input 
leads to better accuracy in almost all cases. Promisingly, the 
performance decline of EquiPNAS when switching from ex- 
perimental input to AlphaFold2 prediction is much smaller 
compared to other methods. For instance, EquiPNAS loses 
only ∼2.3% of PR -A UC points when using AlphaFold2 pre- 
dictions as input instead of experimental ones for protein–
DNA binding site prediction, whereas GraphBind experiences 
a higher PR -A UC drop of 4.4–6.9% PR -A UC points. EquiP- 
NAS also demonstrates robustness in protein–RNA binding 
site prediction with a negligible drop in ROC-AUC (0.1%) 
when using AlphaFold2 predictions as input, whereas Graph- 
Bind shows a much higher ROC-AUC drop (7.7%). That is,
EquiPNAS exhibits a minor performance decline when switch- 
ing from experimental input to prediction while outperform- 
ing both GraphBind and GraphSite regardless of the use of 
predicted or experimental structures, demonstrating its ro- 
bustness and generalizability and enabling accurate prediction 

of protein–DNA and protein–RNA binding sites at scale using 
AlphaFold2 predicted structural models. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
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Figure 2. R epresentativ e e xamples of protein–DNA and protein–RNA binding site predictions using EquiPNAS and the closest competing methods 
compared to the experimental observation. For targets from the Test_129 ( A ) and Test_181 ( B ) sets, protein–DNA binding site prediction using 
GraphSite versus EquiPNAS are shown. For targets from the T est_1 17 set ( C ), protein–RNA binding site prediction using GraphBind versus EquiPNAS 
are shown. True Positive (TP), False Positive (FP), and False Negative (FN) binding sites are represented in green, red, and yellow, respectively. 
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Figure 3. Feature ablation study. For protein–DNA binding site prediction, bar charts representing the performance of the ablated variants in terms of ( A ) 
ROC-AUC and ( B ) PR-AUC obtained using 5-fold cross validation are shown. For protein–RNA binding site prediction, bar charts representing the 
performance of the ablated variants in terms of ( C ) ROC-AUC and ( D ) PR-AUC obtained using 5-fold cross validation are shown. 
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In the context of large-scale protein–nucleic acid binding
site prediction using AlphaFold2 predicted structural models,
a related question is: Is there any relationship between the self-
estimated accuracy of AlphaFold2 predicted structural mod-
els and the accuracy of EquiPNAS binding site prediction?
We examine the self-estimated accuracy of AlphaFold2 pre-
dicted structural models using the AlphaFold2 predicted local
distance difference test (pLDDT) and the ROC-AUC and PR-
AUC of EquiPNAS binding site prediction resulting from the
predicted structure. Using a pLDDT threshold of 0.85, we di-
vide the targets in the test sets into two roughly equal groups:
moderate confidence predictions with pLDDT values ≤0.85
and high confidence predictions with pLDDT values > 0.85.
Supplementary Figure 1 shows the ROC-AUC and PR-AUC
distributions for the two groups. Across the test datasets, high
confidence predictions lead to better ROC-AUC and PR-AUC
values compared to moderate confidence predictions, with the
ROC-A UC and PR -A UC distributions resulting from the high
confidence predictions skewed towards higher accuracy bind-
ing site prediction. Furthermore, we observe a noticeable dif-
ference in binding site prediction accuracy in terms of mean
ROC-A UC and PR -A UC values resulting from the moderate
confidence predictions versus the high confidence predictions
(see Supplementary Table 5 ), indicating that the self-estimated
accuracy of AlphaFold2 predicted structural models can in-
form the accuracy of EquiPNAS binding site prediction in the
absence of any experimental information in that highly confi-
dent AlphaFold2 predictions tend to yield more accurate bind-
ing site prediction. 

Ablation study 

Contribution of the pLM embeddings 
EquiPNAS utilizes pLM embeddings from the pretrained
ESM-2 model ( 30 ) as part of the sequence-based features.
To evaluate the relative contribution of the protein language 
model-based features compared to the evolutionary features 
such as PSSM and MSA, we conduct a feature ablation study 
by excluding protein language model-based features or the 
evolutionary features from the full-fledged EquiPNAS feature 
set. Figure 3 displays the 5-fold cross-validation performance 
of the ablated variants of EquiPNAS in terms of ROC-AUC 

and PR -A UC values for protein–DNA and protein–RNA bind- 
ing site prediction. The results demonstrate that excluding pre- 
trained protein language model-based features (no pLM) re- 
sults in the worst performance with a relative PR -A UC drop of 
18.5% (Figure 3 B) and 15.4% (Figure 3 D) for protein–DNA 

and protein–RNA binding site predictions, respectively. Such 

a significant performance drop highlights the importance of 
using pLM embeddings for our prediction. In contrast, we ob- 
serve only minor performance drops when one or both evo- 
lutionary features were discarded. Even discarding both the 
evolutionary features (no (PSSM + MSA)) results in a relative 
PR -A UC drop of only 2.8% and 2% for protein–DNA and 

protein–RNA binding site predictions, respectively. Overall,
compared to the relatively minor but positive contribution of 
evolutionary features, protein language model-based features 
have a major contribution to the improved performance of the 
new EquiPNAS model. 

The ESM-2 offers a range of pretrained pLMs with varying 
scale ranging from 8 million to 15 billion parameters in- 
cluding esm2_t6_8M_UR50D , esm2_t12_35M_UR50D ,
esm2_t30_150M_UR50D , esm2_t33_650M_UR50D , 
esm2_t36_3B_UR50D and esm2_t48_15B_UR50D-trained. 
The largest pLM esm2_t48_15B_UR50D with 15 billion 

parameters serves as the default choice for the pLM embed- 
dings in our EquiPNAS method. To assess the impact of the 
scale of pretrained pLMs on performance, we retrain five 
separate protein–DNA and protein–RNA binding site predic- 
tion models on the full training set after replacing the pLM 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
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Table 5. Protein-DNA and protein–RNA binding site prediction performance using different ESM-2 pLMs with lower number of parameters 
(esm2_t6_8M_UR50D , esm2_t1 2_35M_UR50D , esm2_t30_1 50M_UR50D , esm2_t33_650M_UR50D and esm2_t36_3B_UR50D) compared to the default 
choice of the pLM used in EquiPNAS (esm2_t48_15B_UR50D) with 15 billion parameters 

Datasets Models R OC-A UC PR-AUC 

Protein–DNA Test_129 esm2_t6_8M_UR50D 0.921 0.504 
esm2_t12_35M_UR50D 0.923 0.507 
esm2_t30_150M_UR50D 0.928 0.539 
esm2_t33_650M_UR50D 0.933 0.543 
esm2_t36_3B_UR50D 0.935 0.531 
EquiPNAS (esm2_t48_15B_UR50D) 0.940 0.569 

Test_181 esm2_t6_8M_UR50D 0.897 0.332 
esm2_t12_35M_UR50D 0.901 0.339 
esm2_t30_150M_UR50D 0.910 0.359 
esm2_t33_650M_UR50D 0.912 0.362 
esm2_t36_3B_UR50D 0.908 0.352 
EquiPNAS (esm2_t48_15B_UR50D) 0.918 0.384 

Protein–RNA Test_117 esm2_t6_8M_UR50D 0.856 0.285 
esm2_t12_35M_UR50D 0.862 0.299 
esm2_t30_150M_UR50D 0.863 0.297 
esm2_t33_650M_UR50D 0.869 0.309 
esm2_t36_3B_UR50D 0.874 0.303 
EquiPNAS (esm2_t48_15B_UR50D) 0.886 0.320 

Values in bold represent the best performance. 

Table 6. Protein–DNA and protein–RNA binding site prediction performance of EquiPNAS variant trained without an y e v olutionary inf ormation (w / o 
MSA + PSSM) against the top-performing methods on the test datasets using AlphaFold2 predicted structural models as input 

Datasets Methods R OC-A UC PR-AUC 

Protein–DNA Test_129 GraphBind* 0.916 0.497 
GraphSite* 0.934 0.544 
EquiPNAS w / o (MSA + PSSM) 0.936 0.544 

Test_181 GraphBind* 0.893 0.317 
GraphSite* 0.917 0.369 
EquiPNAS w / o (MSA + PSSM) 0.917 0.364 

Protein–RNA Test_117 GraphBind 0.793 0.204 
EquiPNAS w / o (MSA + PSSM) 0.877 0.299 

Note: * Results are obtained directly from the published work of GraphSite. 
Values in bold represent the best performance. 
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mbeddings from the default esm2_t48_15B_UR50D choice
ith other ESM-2 pLMs with lower number of parameters

ncluding esm2_t6_8M_UR50D , esm2_t12_35M_UR50D ,
sm2_t30_150M_UR50D , esm2_t33_650M_UR50D , and
sm2_t36_3B_UR50D models. Table 5 reports the per-
ormance of these alternative models in comparison to
quiPNAS (utilizing esm2_t48_15B_UR50D) for both
rotein–DNA and protein–RNA test sets. The results demon-
trate that models trained with the pLM having the lowest
umber of parameters (esm2_t6_8M_UR50D) perform the
oorest in both protein–DNA and protein–RNA binding site
rediction tasks, with a 12.2–15.7% lower PR -A UC values
ompared to EquiPNAS in the test datasets. With the increase
n number of parameters of the ESM-2 pLMs, test set per-
ormance tends to improve. EquiPNAS leveraging the largest
LM esm2_t48_15B_UR50D with 15 billion parameters
onsistently achieves the best performance across all test sets,
ustifying our choice of the ESM-2 pLM. A recent method
alled GeoBind ( 55 ), which exploits protein molecular sur-
aces for protein–nucleic acid binding site prediction using
eometric deep learning, attains state-of-the-art performance
y extracting molecular surfaces computed from experimen-
al structures coupled with evolutionary information in the
orm of MSA or pLM embeddings to replace MSA. The
ublished work of GeoBind, trained on the same training set
used in our method, reports its performance for protein–DNA
(on Test_129) and protein–RNA (on Test_117) binding site
prediction tasks using experimental structures as input. In
a head-to-head comparison with GeoBind on the identical
set of test targets, our method EquiPNAS consistently out-
performs GeoBind in both protein–DNA and protein–RNA
binding site prediction tasks (see Supplementary Table 6 ). For
example, EquiPNAS using experimental structures as input
attains higher ROC-AUC of 0.943 (and 0.887) than GeoBind
having an ROC-AUC of 0.940 (and 0.874) for protein–DNA
(and protein–RNA) binding site prediction tasks. Once again,
EquiPNAS exhibits remarkable robustness by attaining com-
parable or even better accuracy with predicted structural
models from AlphaFold2 than what GeoBind can achieve
even with experimental structures. That is, EquiPNAS is
robust and more accurate compared to GeoBind. 

Recognizing the major contribution of pLM features com-
pared to the relatively minor impact of the evolutionary fea-
tures, we investigate the performance of our method utiliz-
ing the pLM embeddings, but without using any evolutionary
information. Specifically, we discard the PSSM and MSA fea-
tures and retrain our method on the full training set, and eval-
uate the performance on the test sets for both protein–DNA
and protein–RNA binding site prediction tasks. As reported in
Table 6 , We find that for protein–DNA binding site prediction,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae039#supplementary-data
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Figure 4. The running time of the full-fledged version of EquiPNAS and its variant trained without any evolutionary information on ( A ) protein–DNA 

(Test_129) and ( B ) protein–RNA (Test_117) binding site prediction. For each target, input protein length versus runtime (in seconds) are shown. 
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EquiPNAS without PSSM or MSA (denoted by ‘EquiPNAS
w / o (PSSM + MSA)’) outperforms GraphBind, and performs
comparably to GraphSite; with only a slight performance
decline compared to the full-fledged version of EquiPNAS.
For example, in Test_129, EquiPNAS w / o (PSSM + MSA)
achieves a ROC-AUC of 0.936 and a PR -A UC of 0.544,
which is comparable to GraphSite (ROC-AUC of 0.934 and
PR -A UC of 0.544) and much higher than GraphBind (ROC-
AUC of 0.916 and PR-AUC of 0.497). We observed a simi-
lar trend in Test_181. In contrast, the state-of-the-art Graph-
Site experiences a noticeable performance drop without us-
ing any evolutionary features. As reported in the published
work of GraphSite, PR -A UC drops from 0.544 down to 0.452
without using its MSA-derived features (-AF2 Single). For
protein–RNA binding site prediction (Test_117), EquiPNAS
w / o (PSSM + MSA) achieves a ROC-AUC of 0.877 and a
PR -A UC of 0.299, which is noticeably better than Graph-
Bind (ROC-AUC of 0.793 and PR-AUC of 0.204). Collec-
tively, the results demonstrate the robustness of EquiPNAS
over the state-of-the-art methods in that EquiPNAS is able to
significantly reduce the dependence on the availability of evo-
lutionary information which is not always abundant such as
with orphan proteins or rapidly evolving proteins. Even with-
out using any evolutionary information, and thus at a much
lower computational overhead required for MSA and PSSM
feature generation, our method performs comparably (in the
case of protein–DNA), even superior (in the case of protein–
RNA) to the full-fledged state-of-the-art protein–DNA and
protein–RNA binding site prediction methods. In summary,
EquiPNAS enables us to build generalizable and scalable
models. 

We further analyze the running time of the full-fledged
version of EquiPNAS against its variant, ‘EquiPNAS w / o
(PSSM + MSA)’, that utilizes the pLM embeddings but with-
out any evolutionary information. As shown in Figure 4 , the
running time of EquiPNAS is clearly dependent on the length
of the input protein, whereas the variant trained without any
evolutionary information w / o (PSSM + MSA) exhibits no
such trend and yields a near-constant running time regard-
less of the protein length. With an average running time of
approximately 110 s, EquiPNAS w / o (PSSM + MSA) attains
a speed boost of around 3–4 times compared to the full-
fledged EquiPNAS version. That is, bypassing the evolution- 
ary features leads to orders of magnitude speedup in running 
time. 

Contribution of equivariance 
EquiPNAS delivers robust and improved performance across 
various datasets and predictive modeling scenarios. In order 
to understand the reasons behind such improved performance 
and verify that it is connected to the equivariant nature of 
the model, we perform an ablation study by isolating the ef- 
fect of the equivariant graph convolutions used in EquiPNAS.
In particular, we train a family of baseline graph neural net- 
works for protein–DNA and protein–RNA binding site pre- 
diction tasks after turning off the coordinate updates of the 
equivariant graph convolution layers, thus making it an in- 
variant network. Both the equivariant (the full-fledged version 

of EquiPNAS) and invariant counterparts are trained on the 
same training datasets using the same set of input features and 

hyperparameters as the full-fledged version of EquiPNAS. Fig- 
ure 5 shows the performance of the equivariant and invariant 
networks using both experimentally determined (native) and 

AlphaFold2 predicted structures. The results demonstrate that 
equivariant networks used in the full-fledged version of EquiP- 
NAS consistently outperform the invariant baseline networks 
regardless of the use of predicted or native structures as in- 
put. Strikingly, the invariant baseline models even using the 
native structures perform worse than the equivariant mod- 
els using the AlphaFold2 predicted structures, let alone the 
equivariant models using the experimental structures. For in- 
stance, in the Test_129 set, the baseline invariant model attains 
ROC-A UC (and PR -A UC) of 0.938 (and 0.565) using the na- 
tive structures, whereas the equivariant model attains ROC- 
A UC (and PR -A UC) of 0.940 (and 0.569) using AlphaFold2 

predicted structures, and 0.943 (0.582) using native struc- 
tures. A similar trend is also overserved in test sets Test_181 

and Test_117. Overall, the results highlight the performance 
contribution and remarkable robustness of the equivariant 
networks used in EquiPNAS, attaining better accuracy with 

AlphaFold2 predicted structural models than what an invari- 
ant counterpart can achieve even with experimental structures 
for both protein–DNA and protein–RNA binding site predic- 
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Figure 5. T he perf ormance of equiv ariant netw orks used in the full-fledged v ersion of EquiPNAS compared against the in v ariant baseline netw orks using 
both experimental (native) and AlphaFold2 predicted str uct ures as input. ROC-AUC and PR-AUC for protein–DNA test set Test_129 are presented in ( A, 

B ); ROC-AUC and PR-AUC for protein–DNA test set Test_181 are presented in ( C, D ); ROC-AUC and PR-AUC for protein–RNA test set T est_1 17 are 
presented in ( E, F ). 
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his work presents EquiPNAS, a new pLM-informed equiv-
riant deep graph neural network framework for accurate
rotein–nucleic acid binding site prediction. We demonstrate
hat EquiPNAS consistently outperforms the state-of-the-art
ethods on both protein–DNA and protein–RNA binding

ite prediction tasks. A major contribution of our work is
he successful utilization of protein language model (pLM)
mbeddings, a previously unexplored avenue in the context
f protein–DNA and protein–RNA binding site predictions.
ur ablation study reveals that the pLM embeddings are suffi-

iently powerful that can dramatically reduce the dependence
n the availability of evolutionary information which is not al-
ays abundant such as with orphan proteins or rapidly evolv-
 

ing proteins, enabling us to build generalizable models. More-
over, despite being trained on experimental structures as in-
put, our method exhibits remarkable robustness and perfor-
mance resilience by attaining high predictive accuracy even
when AlphaFold2 predicted structural models are used as in-
put, dramatically enhancing the scalability of protein–nucleic
acid binding site prediction without compromising on accu-
racy. Through controlled experiments, we directly verify that
the symmetry-aware nature of the E(3) equivariant graph-
based framework is a major driving force behind the improved
performance of EquiPNAS, particularly when predicted struc-
tures are used as input. 

While this work focuses on partner-independent protein–
nucleic acid binding site prediction, that is, predicting the
binding sites based only upon the surface of an isolated
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protein without any prior knowledge about the interacting
nucleic acid partner; incorporating additional information re-
garding the DNA or RNA molecules interacting with the pro-
tein may lead even more accurate binding sites prediction. Be-
yond the realm of binding site prediction, a promising direc-
tion for future work is to develop accurate, robust, and scal-
able computational approaches for protein–DNA or protein–
RNA complex structure modeling, capturing protein–DNA
and protein–RNA interactions at the atomic level. In this re-
gard, the predicted protein–nucleic acid binding sites can serve
as additional restraints, alongside physics- and / or knowledge-
guided force fields, to facilitate more efficient and accurate
protein–DNA or protein–RNA complex structure modeling.
The predicted binding site information can complement and
supplement the existing force fields as an additional scoring
term to efficiently navigate the conformational space acces-
sible to protein–nucleic acid complexes, leading to improved
predictive modeling. 

Data availability 

The raw data used in this study, including the datasets for
train, test and validation are collected from publicly avail-
able sources and freely available at http://www.csbio.sjtu.
edu.cn/ bioinf/ GraphBind/ and https:// github.com/ biomed-AI/
GraphSite . 

Code availability . An open-source software implementation
of EquiPNAS, licensed under the GNU General Public License
v3, is freely available at https:// github.com/ Bhattacharya-Lab/
EquiPNAS . 
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