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Abstract

Motivation: High-fidelity scoring of RNA 3D structures remains a major challenge in RNA structure prediction and
conformational sampling. While single-model methods for scoring RNA structures can capture individual structural
features, they fail to capture the broader structural consensus within a conformational ensemble, limiting their effectiveness
in ranking and model selection.

Results: We present PARSEDbp, a fast and effective multi-model RNA scoring method that integrates pairwise structural
agreement across the conformational ensemble with base pairing consistency. By leveraging both alignment-based global
structural agreement at the 3D level and base pairing consistency at the 2D level, PARSEbp efficiently constructs a
consensus similarity matrix from which per-structure accuracy scores are computed. Tested on 16th Critical Assessment of
Structure Prediction (CASP16) RNA targets, PARSEDbp significantly outperforms existing single- and multi-model RNA
scoring functions, including traditional statistical potentials, state-of-the-art deep learning methods, and consensus-based
approaches, as well as a baseline variant of PARSEbp without the emphasis on base pairings, across a wide range of

complementary assessment metrics.

Availability: PARSEDp is freely available at https://github.com/Bhattacharya-Lab/PARSEbp.
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1 Introduction

The three-dimensional (3D) structure of RNA plays a central role
in determining its catalytic activity, regulatory capacity, and
molecular interactions [1, 2]. However, unlike proteins, RNAs
are structurally flexible and can adopt diverse conformations
stabilized by canonical and non-canonical base pairs, long-range
interactions, and interactions with other molecules [3, 4, 5, 6].
Due to the inherent flexibility of RNA molecules, ensemble-
based approaches for RNA 3D structure prediction are crucial
to capture the range of conformations plausible for a given
sequence [7]. Recent advances in computational modeling
of RNA 3D structures involving both deep learning-based
methods [8, 9, 10, 11] and stochastic energy- or template-based
approaches [12, 13| enable the generation of a large pool of
candidate 3D structures for a given sequence. Despite the
progress, automated prediction of RNA 3D structures still
lags behind the human-expert modeling groups in the recent
community-wide blind assessments [14, 15, 16|, largely due to
data scarcity, structural complexity, and weak evolutionary
signal of RNA sequences [17]. To render the computational
ensembles practically useful, RNA scoring methods are essential
to identify high-quality models from misfolded alternatives
present in the ensemble to improve the accuracy of RNA 3D
structure prediction [18, 19].

Existing approaches for 3D RNA scoring can be broadly
divided into two categories: single-model and multi-model
methods. Single-model scoring methods evaluate each candidate
structure independently without considering the alternative
conformations available in the ensemble. These methods rely on

either knowledge-based statistical potentials [20, 21, 22, 23]
or deep learning architectures [24, 25, 26, 27| to estimate
specific structural quality scores. However, all single-model
scoring methods rely on experimental structures, either as
supervised signal to train their architecture or fine-tune the
statistical potential parameters, thus limited to the paucity
of the available RNA 3D structures in Protein Data Bank
(PDB) [28]. Additionally, such methods often fail to capture
the broader consensus within a structure ensemble, limiting
their effectiveness in ranking and model selection. In contrast,
multi-model scoring methods can exploit the agreement across
the ensemble of candidate structures to infer individual model
quality in an unsupervised manner, without the need for
experimental structures to train or fine-tune the parameters. A
recent method RNAtive [29], the only existing publicly available
multi-model RNA scoring method in the literature, derives
consensus base pairs by identifying recurrent patterns across
RNA 3D folds to assign individual quality scores. However,
RNAtive does not perform an explicit all-vs-all pairwise
comparison across the ensemble, limiting the ability to capture
the full spectrum of structural agreement. This motivates the
need to develop an accurate and computationally efficient multi-
model RNA scoring method that can integrate both pairwise
global structural similarity and base pairing fidelity across the
entire ensemble to deliver robust quality estimates.

In this work, we present PARSEbp, a pairwise multi-model
RNA scoring method that integrates global 3D structural
similarity with 2D base pairing consistency. PARSEbp computes
pairwise TM-scores [30] across the structural ensemble to capture
global fold similarity with additional emphasis from pairwise
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Interaction Network Fidelity (INF) scores [31], which quantifies
the agreement of canonical and non-canonical base pairs between
structures. These measures are combined into a consensus
similarity matrix, from which per-structure quality scores are
computed by averaging the agreement with all other models in
the structural ensemble. Benchmarking on 25 RNA targets from
the recently concluded CASP16 challenge, PARSEbp achieves
the highest global Spearman’s correlation (0.92) while attaining
the lowest top-1 loss of 0.05, demonstrating its effectiveness
in top model selection from the diverse structural ensemble in
CASP16. By unifying pairwise agreement at the 3D and 2D
levels, PARSEDbp provides a fast, accurate, and consensus-driven
quality estimation tool, requiring only a few minutes to score an

entire structural ensemble for a typical RNA of 100 nucleotides.

2 Materials & Methods
Given a set of N RNA 3D structures S = {S1,S2,...,9n}

as input, we evaluate the structural quality of the decoys by
combining pairwise 3D structural similarity with base pair (2D)
consistency among the structures in the pool. Specifically, for
each ordered pair of structures (S;, S;) with ¢ # j, we compute
the pairwise similarity score T;; as follows:

T;; = TM-score(S;,S;) Vi,5 Ti; €[0,1] (1)

This results in a complete N X N pairwise similarity matrix
T = [T;;] which encodes the global structural similarity in
terms of TM-score [30] across the ensemble. To guide this global
pairwise similarity, we further assess the base pairing consistency
among the structures by extracting 2D base pair map Sfp from
each 3D structure using MC-annotate [32], a widely used method
for RNA base pair annotation. For every pair of structures
(Si,S;), we compute the pairwise Interaction Network Fidelity
(INF) score [31], which quantitatively measures the overlap of
base pairing patterns as a degree of agreement between the
two structures. INF is defined as the geometric mean between
precision and recall and is calculated in the following way:

|TP| |TP|

INF =
|TP|+ |FP| |TP|+ |FN|

(2

Here, true positives (T'P) denote overlapping interaction pairs
between structures (S;) and (S;) while false positives (FP)
and false negatives (FN) denote the set of interactions only
found in either (S;) or (S;), respectively. The pairwise base pair
consistency I;; between two maps S’ and S;’p, yielding the
pairwise base pair similarity matrix I = [I;;] is defined as:

L; =INF(S;”, ") Vi,j Iy €0,1] (3)
‘We combine the pairwise 3D and 2D agreements by taking an
element-wise multiplication between the two similarity matrices

T and I as follows:
M =Tol, M;;="T;l; (4)
This yields the consensus matrix M = [M;;], which captures
both the global 3D similarity between structures and the extent
to which this similarity is reinforced by consistent base pairing
interactions. The quality score @; for each structure S; is defined
as the mean agreement with all other structures in the ensemble:

N
1

Qi = Z M;; (5)
N —1“
i=1
J#i
The resulting set of scores Q = {Q1,Q2,...,Qn} provides
a quantitative self-assessment of the structures, where higher
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scores correspond to structures consistently supported by both
3D structural similarity and 2D base pairing patterns across
the ensemble. To ensure scalability for long RNA sequences and
large conformational ensembles, all pairwise computations are
parallelized and executed in batches.

We evaluate our method PARSEbp against a broad set of both
single-model and multi-model RNA scoring methods. Among
the single-model methods, we compare against traditional
knowledge-based statistical potentials such as rsRNASP [20],
rsRNASP1 [21], cgRNAsp [22], DFIRE-RNA [23]| and state-of-
the-art deep learning-based approaches, including RNA3DCNN
[24], ARES [27], lociPARSE [25] and RNArank [26]. For
multi-model methods, we compare PARSEbp against the only
available web-based tool RNAtive [29] along with a baseline
variant of PARSEbp without the emphasis on base pairings.
Our benchmark set contains 4,750 decoy 3D structures across
25 RNA targets with sequence length < 500, as listed in
Supplementary Table S1. Targets with length > 500 are
omitted from evaluation, as CASP16 results indicate that they
predominantly yielded low-quality decoys in the ensemble [16].
Ground truth scores of all the structures are obtained from the
official CASP16 assessment, following the CASP16 composite
evaluation formula [16] proposed by the assessors, defined as the
weighted combination of three structural similarity measures:
TM-score [30], Local Distance Difference Test (IDDT) [33] with
stereochemical checks enabled, and GDT TS [34], as follows:

G = 0.3 x TM-score + 0.3 x GDT_ TS+ 0.4 x IDDT (6)

The scoring performance of various methods is evaluated using
global Pearson’s correlation (r), Spearman’s rank correlation
(p), and root mean squared error (RMSE) between predicted
and ground truth scores, along with per-target average r, p,
and loss (top-1 loss). which is defined as the absolute difference
between the ground truth of the top-ranked structure and that
of the best structure for each target.

3 Results

Table 1 summarizes the performance of PARSEbp against
competing single-model and multi-model RNA scoring methods
on 25 CASP16 RNA targets using the composite ground truth
metric G (Eq. 6). At the global level, PARSEbp achieves
the highest Pearson’s correlation (r = 0.91) and Spearman’s
correlation (p = 0.92) with respect to ground truth scores
while yielding the lowest root mean square error (Error =
0.11). On a per-target basis, our method consistently delivers
superior correlations and the lowest average loss compared to
all other methods. PARSEbp exhibits a remarkable performance
advantage compared to single-model approaches. Knowledge-
based statistical potentials such as rsRNASP, rsRNASPI1,
cgRNAsp, and DFIRE-RNA achieve only modest performance,
with global correlations not exceeding » = 0.22 and substantially
higher errors, underscoring the challenge of generalizing from
limited reference states. Deep learning—based methods perform
comparatively better, with RNArank attaining the highest
global Pearson’s correlation among single-model approaches
(r = 0.72) and lociPARSE achieving the highest per-target
average Pearson’s correlation (r = 0.70). In terms of per-
target average loss, lociPARSE and RNA3DCNN both reach
0.09, representing the best performance within the single-model
methods. Nonetheless, PARSEbp surpasses all single-model
approaches in both global and per-target evaluations by large
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Table 1. Performance on 25 CASP16 RNA targets (4,750 decoys) based on the
CASP16 official assessment metric as the ground truth, sorted in increasing order of
global Pearson’s r. Values in bold indicate the best performance.

Type Method Global Per-target average
r 4 p+ Errory rt p 1t Loss |
DFIRE-RNA 0.12 0.02 0.55 0.57 0.58 0.11
rsRNAspl 0.13 0.16 0.55 0.61 0.61 0.12
cgRNAsp 0.18 0.09 0.48 0.56 0.54 0.12
Single- RNA3DCNN 0.20 0.24 0.54 0.68 0.68 0.09
Model  rsRNAsp 0.22 0.16  0.46 0.62 0.61 0.15
ARES 0.44 044 0.34 0.57 0.57 0.21
lociPARSE 0.61 0.62 0.32 0.70  0.67 0.09
RNArank 0.72 0.80 0.28 0.66 0.59 0.10
RNAtive 0.52 0.60 0.45 0.63 0.63 0.11
Multi- PARSEbp w/o bp 0.89 0.90  0.12 0.83  0.79 0.05
Model  pARSEbp 0.91 0.92 0.11 0.85 0.82 0.05

* Evaluated on 12 targets as RNAtive fails to run on the remaining set of CASP16 targets (sce

Supplementary Table S3 for performance comparison against PARSEbp on common set of targets)

margins, achieving the highest per-target average Pearson’s
correlation (r = 0.85) and the lowest top-1 loss (0.05). These
results demonstrate the reliability of PARSEbp in consistently
delivering top-notch performance across various complementary
assessment metrics. Detailed per-target results are available in
Supplementary Table S2.

When considering multi-model RNA scoring approaches,
PARSEDbp is compared against RNAtive, the only other multi-
model method currently available in the literature. However,
RNAtive is not only limited by ensemble size but also fails on
roughly half of the CASP16 targets, particularly for targets
dominated by low-quality structures, necessitating additional
filtering based on clash score, bond lengths, or angle geometry
to proceed, and ultimately making it unsuitable for evaluation
across the full set of targets. On the reduced set of 12 targets
where RNAtive runs successfully, its performance remains
modest with a global error of 0.45 and a per-target average
loss of 0.11, lower than even the state-of-the-art single-model
approaches. To ensure fairness, we benchmark PARSEbp on this
reduced set and report the results in Supplementary Table S3.
On this reduced benchmark of common set of targets, PARSEbp
consistently outperforms RNAtive, achieving a global Pearson’s
correlation of » = 0.87 and error of 0.13, much better than
RNAtive’s r = 0.52 and error of 0.45. At the per-target level,
PARSEDbp attains a loss of 0.03, far lower than that of RNAtive
(0.11). To further assess the contribution of the emphasis on
the base pair, we compare PARSEbp with a baseline variant
that relies only on pairwise TM-score similarity, without the
emphasis on base pairings. As shown in Table 1, removing
base pairs leads to a noticeable drop in performance in terms
of both global and per-target average correlations. The drops
in correlations are statistically significant at 95% confidence
level as revealed by the Wilcoxon signed-rank test with P-value
= 0.02 for Pearson’s r and P-value = 0.03 for Spearman’s
p, confirming that the incorporation of base pair consistency
provides a meaningful gain in performance for multi-model
RNA scoring. In summary, our method significantly outperforms
the existing multi-model RNA scoring approach RNAtive and
base pair information meaningfully contributes to the improved
performance of PARSEbp.

PARSEbp completes
ensemble-wide scoring for typical RNA targets of length

In terms of computational efficiency,

approximately 100 nucleotides within half a minute. By
comparison, RNAtive requires substantially longer runtime
(approximately half an hour) even for shorter targets (<=
100), highlighting the suitability of PARSEbp for large-scale
applications. Runtime analysis on the CASP16 benchmark set,
provided in Supplementary Figure S1, further confirms
that PARSEbp exhibits scalability with increasing sequence
length and structural ensemble size without sacrificing accuracy.
Collectively, these results demonstrate that PARSEbp is a robust
and accurate method for multi-model RNA scoring.

4 Conclusion

We present PARSEDbp, a fast, accurate, and reliable multi-model
RNA scoring method that unifies pairwise global structural
similarity at the 3D level and base pairing consistency at the
2D level. By explicitly performing all-vs-all alignment-based
comparisons given a structural ensemble with emphasis on
base pairings, PARSEbp provides consensus-driven high-fidelity
scoring of RNA 3D structures, significantly outperforming
all existing single- and multi-model methods in CASP16 test
set. PARSEbp should be broadly useful for scoring RNA 3D
structures at scale.

5 Data Availability

The open-source PARSEbp method is freely available at https:
//github.com/Bhattacharya-Lab/PARSEbp.

The RNA 3D decoy structures and corresponding ground
the CASP16 RNA targets have been
downloaded from https://predictioncenter.org/download_area/
CASP16/predictions/RNA/ and https://predictioncenter.org/
caspl6/results.cgi?view=targets&tr_type=rna, respectively.

truth scores for
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