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Abstract
Motivation: Despite the groundbreaking advances in deep learning-enabled methods for bimolecular modeling, predicting
accurate three-dimensional (3D) structures of RNA remains challenging due to the highly flexible nature of RNA molecules
combined with the limited availability of evolutionary sequences or structural homology.
Results: We introduce RNAbpFlow, a novel sequence- and base-pair-conditioned SE(3)-equivariant flow matching model
for generating RNA 3D structural ensemble. Leveraging a nucleobase center representation, RNAbpFlow enables end-to-end
generation of all-atom RNA structures without the explicit or implicit use of evolutionary information or homologous
structural templates. Experimental results show that base pairing conditioning leads to broadly generalizable performance
improvements over current approaches for RNA topology sampling and predictive modeling in large-scale benchmarking.
Availability: RNAbpFlow is freely available at https://github.com/Bhattacharya-Lab/RNAbpFlow.
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1 Introduction
The determination of three-dimensional (3D) structures of
RNA has become a crucial challenge in structural biology,
driven by the growing interest in RNA-based therapeutics
[1, 2]. High-resolution characterization of 3D RNA structure is
essential for the design and understanding of RNA molecules
with specific therapeutic functions [3], thus expanding the
scope of RNA-mediated drug discovery [4]. However, the
intrinsic conformational flexibility of RNA presents significant
challenges for experimental structure determination methods
such as X-ray crystallography, nuclear magnetic resonance
(NMR) spectroscopy, and cryo-electron microscopy (Cryo-EM).
Computational RNA structure prediction, therefore, is emerging
as an attractive alternative to fill the gap in RNA structure space
and to elucidate RNA conformational dynamics that underpins
diverse cellular processes [5].

Traditional RNA 3D structure prediction methods include
template-based approaches like ModeRNA [6] and RNAbuilder
[7], which rely on homologous structural information, as well as
physics- and/or knowledge-based methods such as FARFAR2
[8], 3dRNA [9], RNAComposer [10], and Vfold3D [11], which
exploit biophysical potentials and pre-built fragment libraries to
assemble full-length RNA structures. However, these approaches
are constrained by the scarcity of RNA structural data in the
PDB [12] and are often computationally prohibitive, making
them less suitable for the prediction of large RNAs with complex
topologies [13, 14]. Although physics-based methods combined
with expert human intervention have demonstrated success in
community-wide blind RNA-Puzzles [15] and CASP (Critical
Assessment of Structure Prediction) challenges [16], there
remains a critical need for fully automated, fast and accurate
methods for computational modeling of RNA structures.

Inspired by the transformative impact of AlphaFold2 [17]
on protein structure prediction [18], a growing number of
deep learning-based methods have recently been developed for
modeling RNA structures including DRfold [13], trRosettaRNA
[14], RoseTTAFoldNA [19], RhoFold+ [20], and NuFold [21]
by leveraging attention-powered transformer architectures [22].
However, except for DRfold, most of these methods are highly
dependent on explicit evolutionary sequence information derived
from multiple sequence alignments (MSA) or implicitly make
use of homologous information learned by biological language
models [20]. Obtaining reliable MSAs for RNA sequences
poses significant challenges due to the isosteric nature of base
pair interactions, hindering sequence alignment efforts [23].
Furthermore, many existing methods fail to fully leverage the
RNA base pair (2D) information, including canonical and non-
canonical base pairing interactions, key determinants of the final
3D conformation of RNA [24, 25]. Finally, the static structure
predictions made by these approaches might be inadequate
to capture the inherent conformational flexibility of an RNA
molecule that often adopts a distribution of conformational
states instead of folding into a static structure [5, 26]. Thus,
there is an urgent need to develop improved computational
methods that can generate a conformational ensemble of all-
atom RNA 3D structures directly from the nucleotide sequence
by making use of base pairing information without explicitly or
implicitly using any evolutionary information.

Diffusion-based generative modeling has achieved remarkable
success in the image domain and is now attracting significant
attention in structural bioinformatics, most notably in
AlphaFold3 [27] for biomolecular interaction prediction, as
well as 3D protein backbone generation with approaches
such as RFdiffusion [28] and FrameDiff [29]. More recently,
methods such as FrameFlow [30] have showcased the power
of SE(3)-equivariant flow matching, achieving better precision

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2025. ; https://doi.org/10.1101/2025.01.24.634669doi: bioRxiv preprint 

https://orcid.org/0000-0002-9630-0141
email:dbhattacharya@vt.edu
https://github.com/Bhattacharya-Lab/RNAbpFlow
https://doi.org/10.1101/2025.01.24.634669
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 RNAbpFlow

Fig. 1. Overview of RNAbpFlow. RNAbpFlow is a sequence- and base-pair-conditioned SE(3)-equivariant flow matching model for generating RNA
3D structural ensemble. Using the nucleotide sequence and base pairing information as conditions, our end-to-end framework enables efficient sampling of
all-atom RNA 3D structures based on a nucleobase center representation without explicitly or implicitly using any evolutionary information.

in designability than their diffusion-based counterpart but
with reduced sampling costs. RNA-FrameFlow [31], a recent
adaptation of FrameFlow for RNA, is the first generative model
that specifically targets 3D RNA backbone generation. However,
the method employs naïve unconditional flow matching,
generating backbones without using sequence or base pairing
information. Such a limitation highlights the opportunity to
develop improved deep generative models for RNA that can
efficiently sample a large conformational ensemble of all-atom
RNA 3D structures by explicitly conditioning on the nucleotide
sequence and base pairing information through conditional flow
matching, thereby offering an elegant combination of principles-
based and data-driven approach to RNA structural ensemble
generation free from sequence- and structural-level homology.

Here we present RNAbpFlow, a novel sequence- and base-
pair-conditioned SE(3)-equivariant flow matching model for
generating all-atom RNA conformational ensemble. The major
contributions of this work lie in the methodology development
of the first conditional flow matching-based method for RNA
3D structure generation. First, RNAbpFlow incorporates
conditions on the nucleotide sequence and base pairing
information from three complementary base pair annotation
methods to comprehensively capture canonical and non-
canonical interactions. Second, by incorporating a nucleobase
center representation that enables the optimization of angles
of all rotatable bonds of nucleobases, RNAbpFlow directly
outputs all-atom RNA structures in an end-to-end fashion,
bypassing the need for a post hoc geometry optimization
module which is impractical in the context of large-scale sample
generation. Third, we introduce base pair-centric auxiliary
loss functions to enable maximal realization of the canonical
and non-canonical base pairing interactions. We empirically
observe performance improvements when base pairing condition
is introduced across a wide range of evaluation metrics,
outperforming a recent Molecular Dynamics (MD) simulation-
based global topology sampling method RNAJP [32] which
explicitly considers base pairing and base stacking interactions.
Additionally, RNAbpFlow generalizes well for sequence- and
base-pair-conditioned RNA 3D structure prediction compared to
several state-of-the-art methods. RNAbpFlow is freely available
at https://github.com/Bhattacharya-Lab/RNAbpFlow.

2 Materials & Methods
2.1 Overview of the RNAbpFlow framework
An overview of our method, RNAbpFlow, is shown in Figure 1.
Our framework is built on the foundations of FrameFlow [30],
a flow matching formulation tailored for fast protein backbone
generation on the SE(3) frame representation. To represent each
nucleotide in an RNA sequence as a rigid body frame defined by
a translation from the global origin and a rotation matrix, as well
as for the full atomic RNA 3D structure generation in an end-to-
end manner, we follow the nucleotide representation presented
in NuFold [21]. The rotation matrix is constructed using the
Cartesian coordinates of C1′ as the origin of the local frame
and O4′– C1′ – C2′ for orientation. Given an RNA sequence
of length N , we begin with N such frames sampled from a
Gaussian distribution as the starting point for our iterative
sampling process. Our method incorporates conditions on the
nucleotide sequence and base pairing information to guide the
conformational sampling process to generate the all-atom RNA
structure. The three base-frame atoms: O4′, C1′, and C2′

are derived from the learned frame representation, while the
first nitrogen of the base (N1 for pyrimidines, N9 for purines)
is imputed using tetrahedral geometry. The remaining atoms
are partitioned into ten frames, and the corresponding atomic
coordinates are generated based on the iterative update of the
frames using the 9 predicted torsion angles lying on the bonds
that connect these frames, leading to an all-atom RNA structure.

2.2 Model Input
Our method operates independently of any MSA or template
information, relying solely on sequence and base pairing (2D)
information for conditional generation of RNA 3D structure.
Specifically, given an RNA sequence of length N as input,
we encode the nucleotide sequence using one-hot encoding,
represented as a binary vector of 4 entries corresponding
to the four types of nucleotides (A, U, C, G). For base
pairing information during the training process, we extract
2D annotations from experimental (native) 3D structures using
three different software tools: RNAView [33], MC-Annotate [34],
and DSSR [35]. These methods capture diverse base pairing
information, including canonical and non-canonical base pairings
identified from the 3D coordinates, which we represent as three
separate 2D binary maps. We use all three maps as input for the
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bias term in our denoiser architecture as edge features. During
sampling, in the absence of native base pairing information, we
use sequence-based predicted base pairs from three different
RNA 2D structure predictors, namely MXfold2 [36], SimFold
[37], and ContextFold [38].

2.3 Network Architecture
2.3.1 RNA Frame representation
We represent each nucleotide in a geometric abstraction using the
concept of rigid body frames. Each nucleotide frame in the form
of a tuple is defined as a Euclidean transform T = (r, x), where
r ∈ SO(3) is a rotation matrix and x ∈ R3 is the translation
vector that can be applied to transform a position in local
coordinates to a position in global coordinates.

2.3.2 SE(3) flow matching on frames
Flow matching (FM) [39] is a class of deep generative models in
which the goal is to learn a velocity field (or flow) that matches
the probability flow of the data distribution to transform a
simple distribution such as Gaussian to the desired complex data
distribution in high-dimensional space. Flow matching directly
learns this velocity field that describes how points should move
from the simple distribution to the target distribution without
completely destroying the data distribution. By integrating an
ordinary differential equation (ODE) over this learned vector
field, FM offers simpler trajectories towards achieving target
distribution offering huge computational speed-up for large-scale
sample generation.

In the context of generative modeling, the geodesic
path describes a smooth transformation of one probability
distribution into another while minimizing distortion. The
concept of geodesics generalizes the notion of shortest paths
in non-Euclidean spaces, enabling efficient computation and
interpretation. Given a noisy frame T0 sampled from a simple
prior density p0(T0) and the experimental frame T1 sampled
from a target distribution p1(T1), the geodesic path connecting
two points T0 and T1 in a combination of simple manifolds
such as R3 and SO(3) can be expressed using exponential and
logarithmic maps following the generalization of flow matching
to Riemannian manifolds [40] in the following way:

Tt = expT0

(
t · logT0

(T1)
)
, (1)

where logT0
(T1) is a vector in the tangent space of T0 pointing

toward T1, and t ∈ [0, 1] parameterizes the sequence of
probability distributions a.k.a probability path pt between the
two distributions p0 and p1. The conditional flow Tt constructed
in Eq. 1 can be decomposed into separate individual flows for
the simplification of training procedure in the following way:

Translations (R3
) : xt = (1 − t)x0 + tx1,

Rotations (SO(3)) : rt = expr0

(
t logr0

(r1)
)
.

(2)

where the prior distribution p0(T0) during training takes the
form of p0(T0) = IGSO3(σ = 1.5) ⊗ N (0, I3) where random
translation x0 is sampled from the unit Gaussian distribution
N (0, I3) and random rotation is sampled from IGSO3(σ = 1.5)

following [41, 29, 30] for better performance. During training,
the parameter t is sampled from U([0, 1 − ϵ]) where ϵ = 0.1 is
chosen for training stability.

2.3.3 Denoiser model
The objective of our flow matching method is to learn the
parametrized vector field ut, which represents a smooth, time-
dependent (t) map that generates an ordinary differential
equation (ODE) that describes the transformation between two
distributions: p0(T0) (noisy frames) and p1(T1) (ground truth
frames). To learn this mapping from noisy samples to cleaner
ones, we train a parameterized denoiser model vθ(Tt, t) which
will predict clean frames given corrupted ground truth frames
Tt at time t. Following FrameFlow [30], we use the structure
module from AlphaFold2 [17] as the neural architecture of our
denoiser model.

2.3.4 Sampling strategy
During conditional sampling of RNA 3D structures, our
framework takes a random initialization of the backbone frames
T = (r, x), where translation x is sampled from a unit Gaussian
distribution N (0, I3) in R3 and rotation r is sampled from a
uniform distribution in SO(3). During inference, instead of the
linear scheduler for rotation matrices, we use the exponential
scheduler e−ct with c = 10 for better performance. Thus, our
SO(3) flow for rotation in Eq. 2 changes according to the
following equation:

rt = expr0

((
1 − e

−ct
)
logr0

(r1)
)

(3)

Based on the specified number of timesteps, we choose a set of
values for t where t ∼ U([0, 1]). Starting from the random set
of frames, we iteratively update the frame representations using
the predictions from previous steps using our learned denoiser
model with the specified condition at each timestep t in the
following way:

Translations : xt = xt−1 +
∆t

1 − t
· (xt − xt−1) ,

Rotations : rt = exprt−1

(
c∆t · logrt−1

(rt)
)
.

(4)

2.4 Training of RNAbpFlow
Our training objective contains multiple loss function
components related to base pair conditions and all-atom
structure generation. The primary loss function for this
framework is the same SE(3) loss formulated in FrameFlow
[30] namely, the vector field loss in SE(3). To train our denoiser
model vθ, two separate components of this loss are calculated
for the predicted rotation r̂t ∈ SO(3) and translation x̂t ∈ R3

given the corrupted frames Tt at time t as shown below.

Ltrans = Et, p0(T0), p1(T1)

[
1

(1 − t)2

N∑
n=1

∥∥∥x̂(n)
t − x

(n)
1

∥∥∥2

R3

]
(5)

Lrot = Et, p0(T0), p1(T1)

[
1

(1 − t)2

N∑
n=1

∥∥∥∥∥ log
r
(n)
t

(
r̂
(n)
t

)

− log
r
(n)
t

(
r
(n)
1

) ∥∥∥∥∥
2

SO(3)

 (6)

where N is the total number of frames. To predict the 9 torsion
angles ϕ̂n, we use an additional head and calculate the torsional
loss in the following way by comparing with the experimental
angles ϕ:
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4 RNAbpFlow

Ltors =
1

9N

N∑
n=1

∑
ϕ∈Φn

∥∥∥ϕ − ϕ̂
∥∥∥2

(7)

Our base pair-augmented auxiliary loss function components
are described below. At the 3D level, we optimize the predicted
distance between the annotated base pairs (m,n) extracted from
all three base pair annotation methods, termed the bp3D loss,
as follows:

Lbp3D =
1

3

3∑
i=1

1

Nnbpairs
i

Nnbpairs
i∑

n,m=1

∥∥∥D(nm)
i − D̂

(nm)
i

∥∥∥2
(8)

where D
(nm)
i =

∥∥C1′(m) − C1′(n)
∥∥2 denotes the actual

distance between the C1′ atoms of the nucleotide pair (m,n)

denoted by the ith 2D structure annotation method and D̂
(nm)
i

is the predicted distance. At the 2D level, we utilize an additional
head to reduce the dimensionality of the predicted pair features
and compute the BCEWithLogitsLoss against the experimental
2D maps, termed the bp2D loss, as described below:

Lbp2D = −
3∑

i=1

[
SS

(i) ⊙ ŜS
(i) − log

(
1 + e

ŜS
(i))]

(9)

Our final combined weighted loss function is shown below:

Ltotal = 2 × Ltrans + Lrot + Ltors + Lbp3D + Lbp2D (10)

We train our model in PyTorch-Lightning using the Adam
optimizer with a learning rate of 0.0001. The distributed training
process runs on 4 80-GB NVIDIA A100 GPUs for 1000 epochs,
taking approximately 8 hours.

2.5 Training and benchmark datasets
To develop our method RNAbpFlow, we harness a recently
published RNA 3D structural dataset from RNA3DB [42], which
is both sequentially and structurally non-redundant, making
it highly suitable for training and benchmarking deep learning
models. We use the version of RNA3DB parsed from the PDB
[12] on April 26, 2024, selecting a representative set of RNA
sequences from the provided train-test splits for our purposes.
To ensure that the dataset contains only high-quality native
structures, we apply several filtering steps such as excluding
structures with only one atom per nucleotide, removing protein
residues from RNA structures, extracting contiguous sequences
from experimental structures to address mismatches between the
provided FASTA sequences and the experimental 3D structures
for preserving base pairing integrity, and excluding sequences
lacking any base pairs in their corresponding native structures.
Finally, we only retain sequences with a minimum length of 30

and a maximum length of 200 to ensure efficient training. This
results in a clean training set consisting of 573 RNA sequences
and 52 non-redundant test sequences (excluding component
#0) for benchmarking our method development. To compare
RNAbpFlow against RNAJP [32], a recent MD simulation-based
method for RNA 3D structure sampling based on given 2D
structure, we use the dataset of 22 RNAs containing three-way
junctions as used in the original RNAJP study. We exclude
multimeric structures from the dataset and apply CD-HIT-
est-2D between the remaining sequences and our training set

of 573 RNA sequences from RNA3DB to avoid redundancy.
This reduces the benchmark set to 12 RNAs, for which, we
download the predicted all-atom decoy structures generated
by RNAJP from their publicly available repository at https://
rna.physics.missouri.edu/RNAJP/index.html. To benchmark our
method RNAbpFlow on the CASP15 targets, we curate and filter
a completely separate training set sourced from trRosettaRNA,
adhering to the same filtering criteria used previously. We
additionally perform a sequence level non-redundancy check
by applying CD-HIT-est-2D [43] using 80% sequence similarity
threshold between the naturally occurring RNA sequences from
CASP15 and our training sequences, leading to 874 sequences
in the training set and four CASP15 test targets (R1107, R1108,
R1149, and R1156) without having chain breaks in the native
3D structure to preserve base pairing integrity.

2.6 Performance evaluation and competing methods
To evaluate the performance of our method, RNAbpFlow,
compared to other state-of-the-art 3D structure sampling and
prediction methods for RNA, we use a wide range of evaluation
metrics. To evaluate global fold similarity, we calculate the TM-
score (based on C3′) using US-align [44] and GDT-TS (based on
C4′) using the LGA program for RNA [45]. For the assessment
of local environment fitness, we compute lDDT [46] using
OpenStructure [47] version 2.8 and the clash score metric using
MolProbity package [48]. Furthermore, we utilize the CASP-
RNA pipeline [49] to (1) evaluate the full atomic structural
accuracy by calculating the all-atom RMSD and (2) compute
the INF-All score [50], which quantifies how well a structural
model reproduces the base interactions of the reference (usually
an experimentally resolved native structure) by considering
canonical, non-canonical, and stacking interactions.

Since our method RNAbpFlow relies purely on sequence-
and base-pair-conditioned SE(3)-equivariant flow matching
model for RNA 3D structure generation without utilizing
MSAs or template information, we choose two deep learning-
based methods that can only take sequence and base pair
information for RNA 3D structure prediction for the sake of
a fair performance comparison. These include DRfold that
integrates end-to-end and geometric potentials and RhoFold+
which leverages language model. Both DRfold and RhoFold+
are installed and run locally with their default parameters, with
RhoFold+ run in single-sequence mode. In addition to these deep
learning-based approaches, we compare against three physics-
and/or knowledge-based methods: RNAComposer [10], 3dRNA
[51], and Vfold-Pipeline [52]. RNAComposer and 3dRNA are
accessed via their respective web servers, while Vfold-Pipeline
is installed and run locally. For these methods, base pairing
information is provided in dot-bracket notation format, as
predicted by MXfold2 software. To maintain a fair comparison
and accurately assess predictive performance, we do not employ
any post-prediction optimization or refinement procedures for
structure prediction across all methods, except in the cases of
Vfold-Pipeline and RNAComposer, where the option to switch
off the post-prediction refinement functionality is not available.

3 Results
3.1 Impact of base pairs on RNA 3D generation
To assess the significance of the base pairing information
incorporated in our conditional flow matching formulation for
RNA 3D structure generation, we individually condition on
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base pairs extracted from the native 3D structures using each
of the three different 2D annotation tools described in Section
2.2 as well as their combination. We independently train each
variant on the RNA3DB training set (detailed in Section 2.5) and
evaluate on the 52 targets from the corresponding non-redundant
test set. We also train a baseline model by conditioning only on
the nucleotide sequence but not on the base pairing information.
For each target sequence, we generate 1000 3D structural
samples and calculate the maximum and mean of both TM-
score and lDDT. The distribution of the average of these scores
across all 52 targets is shown in Figure 2 based on various base
pair conditioning (or lack thereof).

Fig. 2. Distributions of the maximum and mean of 1000 3D structural
samples per target in terms of (a) TM-score and (b) lDDT across 52

RNA3DB test targets for various base pairing conditioning (or lack thereof).
The green triangles indicate averages.

As shown in Figure 2, RNAbpFlow achieves the best
performance when all three base pair maps are incorporated
as condition, resulting in an average over the maximum per-
target TM-score distribution of 0.51 and lDDT of 0.71. This
represents an average increase of 34.2% in TM-score and 44.9%
in lDDT compared to the baseline sequence-conditioned variant
of our flow matching formulation, which achieves an average
over the maximum per-target TM-score distribution of 0.38 and

lDDT of 0.49. These improvements underscore the critical role
of incorporating base pair information in RNA 3D generative
modeling. The relative contribution of individual base pair maps
is also evident from Figure 2, which demonstrates that none
of the individual maps can alone outperform their combination.
Furthermore, the distributions reveal the consistency of the
generated sample qualities when all three maps are used,
which achieves a relatively smaller interquartile range while
maintaining the highest mean values for both TM-score and
lDDT distributions, indicating both high-quality samples and
reduced variability. This consistency is also reflected in sampling
performance where RNAbpFlow successfully generates at least
one 3D structure with a TM-score exceeding 0.45 (a threshold
for assessing RNA global fold correctness [49]) for 37 out of
52 targets with 71.2% correctly folded targets from the test
set, demonstrating the robustness of RNAbpFlow in RNA 3D
structure generation when accurate base pairing information is
available.

3.2 Structural ensemble generation performance
To evaluate the sampling performance of RNAbpFlow, we
compare against RNAJP, a recent coarse-grained MD simulation-
based method for RNA 3D structure sampling with explicit
consideration of base pair information, including non-canonical
base pairing and base stacking interactions as well as long-
range loop–loop interactions. For the benchmark set of 12 RNA
targets containing three-way junctions described in Section 2.5,
we generate 1000 3D structural samples per target and compute
the mean and maximum scores (TM-score and lDDT) for each
target, which are then averaged across the 12 RNAs. To ensure
a fair comparison, we use the first 1000 decoy structures for
each target provided by RNAJP.

Table 1. Sampling results in terms of maximum
and mean scores of 1000 3D structural samples
for 12 RNAJP test RNAs. Values in bold indicate
the best performance.

Method
TM-score lDDT
Max Mean Max Mean

RNAbpFlow 0.5 0.38 0.72 0.67
RNAJP 0.44 0.32 0.65 0.59

The results, summarized in Table 1, demonstrate that
RNAbpFlow consistently outperforms RNAJP in both metrics.
For example, RNAbpFlow achieves an average over the mean
lDDT score of 0.67, surpassing that of 0.59 achieved by RNAJP.
Similarly, in terms of global topology sampling, RNAbpFlow
generates higher-quality structures, achieving an average over
the mean TM-score of 0.38 compared to RNAJP’s 0.32. The
trend suggests that RNAbpFlow produces better structural
ensembles by capturing accurate global and local structural
features.

Figure 3 showcases two representative examples from the
RNAJP benchmark set, illustrating the predictive performance
of RNAbpFlow compared to the RNAJP method. For each
target, the best structure from the 3D structural samples
generated by both methods is selected based on the highest
TM-score. For the first case study target RNA 2HGH of 55

nucleotides containing one three-way junction, the best structure
predicted by RNAbpFlow shown in Figure 3(a) achieved a TM-
score of 0.58, indicating a correct global fold and a precise
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prediction of the three-way junction, with an all-atom RMSD
of 2.58 Å. By contrast, the RNAJP method achieves a lower
TM-score of 0.42, partly due to the misorientation of the three-
way junction and the hairpin loop. A visual inspection of
the predicted base pairs extracted from the 3D structures in
Figure 4(a) demonstrates that RNAbpFlow more effectively
preserves the overall base pairing interactions, particularly the
non-canonical ones in the three-way junction region than RNAJP.
By capturing the non-canonical base pair interactions with high
fidelity, RNAbpFlow achieves a higher INF-NWC score of 0.78,
which is much higher than that of RNAJP (0.52).

Fig. 3. Two representative RNA targets with PDB IDs (a) 2HGH and (b)
3PDR, both containing three-way junctions shown with the predicted
structural models colored in blue superimposed on the experimental
structures in green and the corresponding evaluation metrics displayed on
the bottom right side each superposition.

For the second case study target 3PDR, a 160-nucleotide target
and the largest in the set containing two three-way junctions, our
method outperforms RNAJP by achieving an all-atom RMSD
of 5.44 Å and a TM-score of 0.7, primarily due to the better
packing of the helices and both of the three-way junction regions
which is visually evident. By contrast, the best prediction by
RNAJP results in an RMSD of 7.84 Å, primarily due to the
deviations in one of the three-way junction regions, as shown in
Figure 3. The extracted base pairs annotated in Figure 4(b),
further highlight the trend that RNAbpFlow more accurately
captures non-canonical and long-range loop-loop interactions,
with fewer false-positives compared to RNAJP.

3.3 Performance on CASP15 targets
3.3.1 Sampling performance
Figure 5 presents a comparison of the sampling performance of
RNAbpFlow on four natural CASP15 RNA targets, conditioned
on both native and noisy (predicted) base pairs as input.
When provided with native base pairs, RNAbpFlow achieves
an impressive average over the maximum per-target TM-score
of 0.62 and successfully generates at least one 3D structure
with a TM-score greater than 0.45 for 100% of the cases.
By contrast, when noisy predicted base pairs are used, the
performance declines significantly, with the average over the

Fig. 4. Canonical and non-canonical base pair annotations extracted using
RNApdbee 2.0 [53] from the experimental and predicted 3D structures
of the two case study targets with PDB IDs (a) 2HGH and (b) 3PDR.
Base pair fidelity for the prediction is evaluated and annotated in terms
of INF-All (all interactions) and INF-NWC (non-canonical interactions).

per-target maximum TM-score dropping to 0.48. Despite this
performance drop, RNAbpFlow still demonstrates its robust
sampling capabilities by generating at least one accurate global
fold (TM-score > 0.45) for 3 out of 4 targets, showcasing
its resilience to noisy 2D information. However, the average
sampling performance declines when the input consists entirely
of predicted base pair maps, with the average over the mean
TM-score per target dropping from 0.42 to 0.32. Such a
performance decline highlights the importance of accurate base
pairing information in guiding the sample generation process.
Additionally, the total number of unique non-canonical base
pairs across the three maps for the four targets decreases sharply
from 26 to only 3 (with no non-canonical pairs present in 3 out
of the 4 targets) when predicted base pairs are used, which could
contribute to the observed drop in performance.

Fig. 5. Distributions of the maximum and mean of 1000 3D structural
samples per target in terms of TM-score and lDDT across 4 CASP15 test
targets for both native and predicted base pair conditioning.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2025. ; https://doi.org/10.1101/2025.01.24.634669doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634669
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNAbpFlow 7

3.3.2 Predictive modeling performance
To directly compare our conditional flow matching-based
RNA 3D structure generation method RNAbpFlow against
the state-of-the-art sequence- and base-pair-conditioned RNA
3D structure prediction approaches, we leverage our recently
published RNA 3D structure scoring method lociPARSE [54],
to select the top structure from the RNAbpFlow generated
structural ensemble based on the estimated lDDT score (pMoL).
The detailed performance comparison is summarized in Table
2, showcasing the ability of RNAbpFlow to predict RNA 3D
structures across a wide range of evaluation metrics. RNAbpFlow
consistently shows better accuracies than the state-of-the-art
deep learning-based method DRfold, achieving a well rounded
performance across all the metrics and consistently outperforms
all physics- and/or knowledge-based methods across almost all
metrics except for clash score where it falls short of the physics-
based method Vfold-Pipeline, which employs a post-refinement
strategy specifically designed to resolve structural clashes.
However, the overall predictive performance of RNAbpFlow can
be improved, as none of the 3 accurate global folds generated
during sampling is selected as the top structure, highlighting the
need for further improvement of the scoring function to identify
accurate 3D structure in the ensemble.

Table 2. Benchmarking the predictive modeling performance on four
natural RNAs from CASP15 with predicted base pairs. Values in
bold indicate the best performance.

Predictors
TM-
score

lDDT RMSD
GDT-
TS

INF-
All

Clash
score

RNAbpFlow∗ 0.34 0.61 13.95 32.90 0.80 73.57
DRfold∗ 0.31 0.55 17.10 31.48 0.73 149.44
RhoFold+∗ ‡ 0.22 0.37 20.29 22.27 0.46 684.04
Vfold-Pipeline † 0.28 0.47 21.23 26.02 0.65 2.46
RNAComposer † 0.27 0.50 18.51 26.68 0.73 16.22
3dRNA † 0.27 0.50 24.16 24.90 0.69 141.11

∗ Deep learning methods.
† Physics and/or knowledge guided methods.
‡ Language model based method, run in single sequence mode.

3.3.3 Impact of native base pairing information

Table 3. Comparison of RNAbpFlow with other predictors on
CASP15 targets with native base pairing information. Values in
bold indicate the best performance.

Predictors
TM-
score

lDDT RMSD
GDT-
TS

INF-
All

Clash
score

RNAbpFlow 0.51 0.72 7.79 49.66 0.89 46.97
DRfold 0.36 0.67 14.47 36.82 0.85 131.68
RNAComposer 0.32 0.59 16.81 31.01 0.84 20.73
3dRNA 0.30 0.54 17.9 28.08 0.72 144.51
VFold 0.28 0.58 19.69 26.44 0.8 0.64

Table 3 shows how the performance of our method RNAbpFlow
varies in the presence of accurate native base pairing
information compared to all other competing methods. For this
benchmarking, all three base pair maps extracted from native
3D structure are provided to DRfold for prediction while the rest
of the methods are supplied with DSSR-extracted base pair map
since they can accept only one map at a time. The predictive
modeling performance of our method RNAbpFlow significantly
improves in the presence of accurate base pairs, achieving an
average TM-score of 0.51 and average RMSD of 7.79, compared
to 0.34 and 13.95 TM-score and RMSD respectively, when

predicted base pairs are used, showing a 50% improvement
in TM-score and a 44.1% reduction in RMSD, which is the
highest performance gain compared to all other methods. This
highlights the versatility of RNAbpFlow in its ability to achieve
a higher performance ceiling by effectively leveraging accurate
base pairing information as a key condition in deep generative
modeling.

3.4 Ablation study and hyperparameter selection

Fig. 6. Distributions of the maximum and mean of 1000 3D structural
samples per target in terms of (a) TM-score and (b) lDDT distribution
across 52 RNA3DB test targets for five different loss combinations. The
green triangles indicate averages.

To evaluate the importance of various loss components and
their contributions to sampling performance, along with
the architectural hyperparameters used during RNAbpFlow’s
training, we perform ablation study using the RNA3DB dataset
described in Section 2.5. Figure 6 and Table 4 report the
sampling performance in terms of TM-score and lDDT on the
RNA3DB test set, calculated as the average over the per-
target maximum and mean scores across 52 RNA3DB test
targets for different ablated variants. Figure 6 shows that
RNAbpFlow achieves the best performance when all three loss
components are used, with a consistent performance decline
when any loss component is removed. For instance, excluding
either or both 2D and 3D base pair loss components (i.e., bp2D
and/or bp3D) leads to a noticeable drop in average TM-score
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and lDDT, underscoring the importance of incorporating base
pairs conditioning in the training. Furthermore, the average
lDDT achieved using only the SE(3)-flow matching loss is
0.44, significantly lower than the 0.66 average lDDT obtained
when incorporating torsion loss and 2D and 3D base pair
losses altogether. This demonstrates the effectiveness of all
the auxiliary loss terms used in RNAbpFlow.

Table 4. Hyperparameter selection based on number of structure-
module blocks, batch size, number of timesteps used to generate a
sample RNA 3D structure and number of samples generated per target
on RNA3DB test set. Values in bold indicate the best performance.

# of blocks
TM-score lDDT

Batch size
TM-score lDDT

Max Mean Max Mean Max Mean Max Mean

2 0.38 0.28 0.63 0.58 1 0.47 0.36 0.69 0.65
4 0.44 0.34 0.67 0.63 4 0.48 0.38 0.7 0.66
6 0.48 0.38 0.7 0.66 8 0.47 0.37 0.69 0.65
8 0.47 0.38 0.7 0.66 16 0.47 0.37 0.69 0.66

# of timesteps
TM-score lDDT

# of samples
TM-score lDDT

Max Mean Max Mean Max Mean Max Mean

5 0.25 0.19 0.36 0.34 10 0.44 0.38 0.68 0.66
10 0.47 0.37 0.7 0.66 100 0.48 0.38 0.7 0.66
50 0.48 0.38 0.7 0.66 500 0.5 0.38 0.71 0.66
100 0.48 0.38 0.7 0.66 1000 0.51 0.38 0.71 0.66

Table 4 highlights the impact of hyperparameter selection
on sampling performance. The number of structural module
blocks significantly influences TM-score and lDDT, with 6

blocks providing the best balance between model complexity
and computational cost. Similarly, a batch size of 4 is sufficient
for training efficiency without compromising accuracy. The
efficiency of the flow matching formulation is also evident from
Table 4, as our method RNAbpFlow achieves near-optimal
results with just 10 timesteps, with marginal gains observed
at 50 timesteps, demonstrating the practical advantage of
our approach for large-scale RNA 3D structure sampling with
minimal computational overhead. Additionally, increasing the
number of generated samples consistently improves performance,
with 1000 samples per target yielding the best performance.
These findings justify our hyperparameter choices used in this
work: 6 structure-module blocks, a batch size of 4, 50 timesteps,
and 1000 samples generated per target.

4 Conclusion
In this work, we developed RNAbpFlow, the first sequence- and
base-pair-conditioned all-atom RNA 3D structure generation
method based on SE(3)-equivariant flow matching model.
Experimental results demonstrate that the introduction of base
pairing conditioning leads to performance improvements, and the
accuracy gain is connected to the quality of the base pairs. Free
from the confines of sequence- and structural-level homology,
RNAbpFlow enables direct generation of all-atom RNA 3D
structural models in an end-to-end manner, thereby opening
promising avenues for RNA conformational dynamics through
large-scale structural ensemble generation in atomic detail.
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