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ABSTRACT: A scoring function that can reliably assess the
accuracy of a 3D RNA structural model in the absence of
experimental structure is not only important for model evaluation
and selection but also useful for scoring-guided conformational
sampling. However, high-fidelity RNA scoring has proven to be
difficult using conventional knowledge-based statistical potentials
and currently available machine learning-based approaches. Here,
we present lociPARSE, a locality-aware invariant point attention
architecture for scoring RNA 3D structures. Unlike existing
machine learning methods that estimate superposition-based
root-mean-square deviation (RMSD), lociPARSE estimates Local
Distance Difference Test (lDDT) scores capturing the accuracy of
each nucleotide and its surrounding local atomic environment in a
superposition-free manner, before aggregating information to predict global structural accuracy. Tested on multiple datasets
including CASP15, lociPARSE significantly outperforms existing statistical potentials (rsRNASP, cgRNASP, DFIRE-RNA, and
RASP) and machine learning methods (ARES and RNA3DCNN) across complementary assessment metrics. lociPARSE is freely
available at https://github.com/Bhattacharya-Lab/lociPARSE.

1. INTRODUCTION
Computational prediction of RNA 3-dimensional structures
from nucleotide sequence has garnered considerable research
effort over the past decade,1−10 and deep learning-enabled
RNA 3D modeling has gained significant attention in the
recent past.11−15 To facilitate the practical applicability of
predicted 3D models, it is critical to have a scoring function
that can reliably assess their global topology and local quality
in the absence of experimental structures.16−18 Moreover, the
ability of a scoring function to distinguish accurate 3D models
of previously unseen RNAs from misfolded alternatives plays
an important role in guiding conformation sampling toward
the native state.19

Existing methods for scoring RNA structures roughly belong
to two categories: knowledge-based statistical potentials and
supervised machine learning. Various knowledge-based stat-
istical potentials have been developed, both at all-atom and
coarse-grained levels,20−24 using different simulated reference
states.25−30 However, reliably distinguishing accurate structural
models of RNA from less accurate ones has proven to be
difficult because the characteristics of energetically favorable
RNA structures are not sufficiently well understood and thus
the reference states may deviate largely from the ideal one.
Machine learning-based methods17,31 aim to overcome such
limitations by learning to predict the accuracy of an RNA
structural model through supervised learning. Indeed, machine
learning-based RNA scoring functions, trained to estimate the

unfitness score either at the nucleotide level or at the structural
level by learning to predict the root-mean-square deviation
(RMSD) from the unknown true structure, have been shown
to be effective in RNA-Puzzles blind structure prediction
challenges.5

Despite the effectiveness, the existing machine learning
methods do not consider some key factors that can
significantly improve the sensitivity of RNA scoring functions.
First, the global superposition-dependent RMSD metric is not
length normalized, is affected by superposition, is dominated
by outliers in poorly modeled structural regions, and does not
take into account the accuracy of the local atomic environ-
ment. RNA is a flexible molecule in which irregular loops may
affect RMSD measures and global superposition may not be
optimal, leading to scoring anomalies. Yet, virtually all existing
machine learning-based RNA scoring functions use RMSD as
the ground truth during supervised training. Second, similar to
other macromolecules, RNA structures have no natural
canonical orientation i.e., the same RNA structure can be
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rotated in space without affecting its biological function, thus
allowing a structure to be represented in any orientation. As
such, machine learning methods that are not invariant to global
Euclidean transformations such as rotation must account for
this aspect of variation by tweaking model architecture and/or
parameters, which may affect their expressiveness and
generalizability. Third, in consideration of RNA as a flexible
molecule in which interplay between various local structural
motifs defines the global topology, an effective scoring function
should not be strongly influenced by the relative motions
between the tertiary motifs. That is, the effects of relative
movement between the motifs should not lead to artificially
unfavorable scores.
Using the Local Distance Difference Test (lDDT)32 as the

ground truth during supervised training is an attractive
alternative to the popular RMSD metric. lDDT compares
distances between atoms that are nearby (within 15 Å) in the
experimental structure to the distances between those atoms in
the predicted structure and offers several advantages over
RMSD. First, being superposition-free and based on rotation-
invariant properties of a structure, lDDT naturally preserves
invariance with respect to the global Euclidean transformations
of the input RNA structure such as global rotations and
translations. Second, lDDT measures the accuracy of the local
environment of the model in atomic detail, without being
affected by superposition or dominated by outliers in poorly
modeled structural regions. Third, lDDT exhibits robustness to
movements between tertiary structural units such as domains
in proteins that can generalize to RNA tertiary motifs, provided
a way can be found that ensures rigid motion between a set of
local structural units is invariant under global Euclidean
transformations on the said units. A solution to this problem
comes from Invariant Point Attention (IPA) proposed in
AlphaFold2 as part of the structural module.33 IPA is a form of
attention that acts on a set of 3D point clouds and is invariant
under global Euclidean transformations on said points, where
3D point clouds are represented using local frames.
How can we capture the aforementioned benefits of lDDT

in a neural network architecture for RNA scoring, while
maintaining invariance under global Euclidean transforma-
tions? Here, we provide such a solution by developing a new
attention-based architecture, called lociPARSE (locality-aware

invariant Point Attention-based RNA ScorEr), for scoring
RNA 3D structures. Different from previous supervised
learning approaches that estimate the RMSD metric, our
method estimates local nucleotide-wise lDDT scores that are
then aggregated over all nucleotides to predict global structural
accuracy. Inspired by AlphaFold2, we define nucleotide-wise
frames parameterized by rotation matrices and translation
vectors operating on predefined RNA conformation at the
local level. To model the local atomic environment of each
nucleotide as captured by lDDT, the IPA implementation used
in the original AlphaFold2 has been modified to incorporate
locality information derived from the RNA atomic coordinates.
By so doing, we are able to effectively capture the accuracy of
each nucleotide while considering the effect of its local atomic
environment. It is worth mentioning here that, although an
RNA 3D structure prediction method that uses AlphaFold2-
inspired IPA architecture can self-estimate the quality of its
own predicted structure given an input RNA sequence, our
method is the first general-purpose RNA scoring method that
is capable of estimating the quality of any input RNA 3D
structure using our modified implementation of AlphaFold2’s
IPA architecture.
Our method significantly outperforms traditional knowl-

edge-based statistical potentials as well as state-of-the-art
machine learning-based RNA scoring functions such as
ARES31 on multiple independent test datasets including
CASP15 blind test targets across a wide range of performance
measures. In particular, lociPARSE exhibits superior ability to
reproduce the ground truth lDDT scores both at the global
and local levels, rank predictions for a given target with high
fidelity, recognize the best predictions consistently, and better
discriminate between “good” and “bad” predictions. An open-
source software implementation of lociPARSE, licensed under
the GNU General Public License v3, is freely available at
https://github.com/Bhattacharya-Lab/lociPARSE.

2. MATERIALS AND METHODS
2.1. lociPARSE: Locality-aware Invariant Point Atten-

tion for RNA Scoring. An overview of our method,
lociPARSE, is illustrated in Figure 1. The core component of
our architecture, outlined in Figure 1b, is an invariant point
attention (IPA) module that utilizes the geometry of the input

Figure 1. Overview of lociPARSE. Given a 3D RNA structure, we estimate the local nucleotide-wise lDDT scores that are then aggregated over all
nucleotides to predict global structural accuracy. (a) Input RNA 3D structure. (b) Architecture of our locality-aware invariant point attention (IPA)
module to capture the accuracy of each nucleotide and the effect of its local atomic environment. (c) By aggregating information at the level of
nucleotide, we output predicted nucleotide-wise lDDT (pNuL) scores before making a prediction at the level of the entire RNA structure to output
predicted molecular-level lDDT (pMoL).
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RNA 3D structure to revise the nucleotide and pair features.
This component is similar to the AlphaFold2’s IPA
formulation used in the structure module, but modified herein
to incorporate locality information derived from the RNA
atomic coordinates. To do this, we introduce locality-aware
geometry and edge-biased attention (Section 2.3.2) to convert
nucleotide pair features to edge adjacencies by considering a
set of k-nearest neighbor nucleotides to capture the local
atomic environment of each nucleotide based on the Euclidean
distances of the C4′−C4′ atoms between nucleotide pairs. In
our setting, we define local nucleotide frames (Section 2.3.1)
from the Cartesian coordinates of C4′, P, and glycosidic N
atoms. The IPA partitions the nucleotide query and value
features into 3D vectors and transforms them from the target
nucleotide’s local frame into a global reference frame before
computing both attention weights and the output of the
attention mechanism. Further, we augment nucleotide-
nucleotide atomic distances between all pairs of 3 atoms P,
C4′ and N, encoded with Gaussian radial basis functions as
pair features (Section 2.2), and make further use of the pair
features to bias attention weights and update scalar features.
Our network architecture consists of 4 IPA layers, with the IPA
hyperparameters (Nheads, c, Nquery points, Nvalue points) set to (4,
128, 8, 4) and we use 20 nearest neighbors for the locality
computation, determined through ablation experiments using
an independent validation set (Section 3.4). The output of the
attention layer is invariant to the global Euclidean trans-
formations such as global rotations and translations of the
input RNA. Finally, a linear layer followed by a two-layer fully
connected network is used to estimate the predicted
nucleotide-wise lDDT (pNuL) scores. These nucleotide-level
pNuL predictions are then aggregated over all nucleotides by
taking an average to estimate the predicted molecular-level
lDDT (pMoL), enabling our method to estimate both local
and global qualities of the input RNA 3D structure.
2.2. Model Input. Our model uses only input features

derived directly from a nucleotide sequence and RNA 3D
structural coordinates. We use just the basic nucleotide-level
encodings for our input. These include one-hot encoding of
the nucleotide (i.e., a binary vector of 5 entries indicating each
of the 4 nucleotide types and one for nonstandard nucleotides
such as ‘T’ or modified nucleotides) and the relative position
of the nucleotide in its sequence calculated as i/L (where i is
the nucleotide index and L is the sequence length). For our
pair features, we use the index i of a nucleotide’s partner in
sequence and the corresponding 3D coordinates, quantified by
sequential separation and spatial proximity information. We do
not consider the nucleotide type of the partner as a pair
feature. The sequence separation i.e., the absolute difference
between the two nucleotide indices is discretized into 5 bins
and represented by one-hot encoding where the first two bins
correspond to self-loops and adjacent bonds, respectively. The
rest of the three bins are defined based on three types of
interactions depending on the sequence separation: short-
range (2−5), medium-range (6−24) and long-range (>24),
similar to.34,35 The other component of our pair features
includes nucleotide-nucleotide atomic distances between all
pairs of P, C4′ and glycosidic N atoms, encoded with radial
basis functions. The radial basis functions are defined based on
the distance from a reference point, making them suitable for
capturing distance-based similarities. We used Gaussian radial
basis functions to encode the interatomic distances in the
following manner. For a nucleotide pair (i, j), at first, k = 9

distances dij
k are calculated because of all possible combinations

among the set of 3 atoms P, C4′ and N. Then, the set of all dij
k

values, D is encoded using Gaussian radial basis function as
follows:
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where, RBF = 16 is the number of radial basis functions, a
value chosen based on the ablation experiment presented in
Table 6 on an independent validation set. As such, Dμ is a set
of 16 linearly spaced values between Dmin = 0 and Dmax = 100,
which indicates the minimum and maximum interatomic
distances, respectively. The output DRBF contains 16 encoded
distance pair features for each distance dij

k. It is important to
note that all our nucleotide and pair features are invariant,
consistent with the invariant layers of the IPA module.
2.3. Network Architecture. 2.3.1. Construction of Local

Nucleotide Frames. To perform invariant point attention on a
set of 3D points, we represent each nucleotide in a geometric
abstraction using the concept of frames. Each nucleotide frame
in the form of a tuple is defined as a Euclidean transform T =
(R, t)⃗, where R ∈ ×3 3 is a rotation matrix and t ⃗ ∈ 3 is the
translation vector that can be applied to transform a position in
local coordinates (x⃗local ∈ 3) to a position in global
coordinates (x⃗global ∈ 3) as

=

=

= +

T

R

R

x x

t x

x t

( , )

global local

local

local (2)

In our setting, we define local nucleotide frames from the
Cartesian coordinates of P, C4′, and glycosidic N atoms of the
input RNA 3D structure and construct 3-bead coordinate
frame using a Gram−Schmidt process specified in Alphafold2
(Algorithm 21) that takes the input coordinates (scaled by 0.1)
of P as x⃗1, C4′ as x⃗2, and N as x⃗3. Note that the translation
vector t ⃗ is assigned to the center atom x⃗2.
2.3.2. Locality-aware Invariant Point Attention. The

formulation of locality-aware IPA used in our work combines
sequence representation, si, from each nucleotide i of the input
RNA, pair representation eij of nucleotide i with other
nucleotides j based on nucleotide pair adjacencies capturing
the local atomic environment of nucleotide i, where j i
is the locality information derived from the RNA atomic
coordinates. Consequently, the update function of the IPA
layer is as follows:

= + { } { }s s s s eIPA( , , )i i i j j ij ji i (3)

To perform attention on 3D point clouds, IPA derives query
(qi

h), key (kih) and value (vih) embeddings from a linear
projection of si to a latent representation of dimension c for
each nucleotide i, where qih, kih, vih ∈ c and h ∈ {1, ··· Nhead}
which represents the number of attention heads in the IPA
module. 3D query, key and value points are also generated
considering the local frame Ti of each nucleotide i, where q⃗ihp,
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k⃗ihp ∈ 3, p ∈ {1, ··· Nquery points} and v⃗ihp ∈ 3, p ∈ {1, ···
Nvalue points}. The IPA module acts on a set of frames
(parameterized as Euclidean transforms of the local frame
Ti) and is invariant under global Euclidean transformations
Tglobal on said frames. By performing locality-aware geometry
and edge-biased attention, the IPA module transforms the 3D
points from the target nucleotide’s local frame into a global
reference frame for computing the attention weights as follows:

= +a w
c

b

T T

q k

q k

softmax ( (
1

w
2

))

ij
h

j i
h

j
h

ij
h

h

p
i i

hp
j j

hp

L

C
2

T

(4)

where bij
h is the attention bias derived from the linear projection

of eij to hidden dimension c, weighting factors wL and wC are
taken from the IPA formulation specified in AlphaFold2 and γh

∈ is a learned scalar value. The attention mechanism acting
on a set of local frames ensures invariance under global
Euclidean transformations such as global rotations and
translations of the input RNA due to the invariant nature of
2-norm of a vector under such rigid transformations.
The attention weights are used to compute the outputs of

the attention mechanism while mapping them back to the local
frame and preserving invariance, as follows:

= ao ei
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The outputs of the attention mechanism are then concatenated
and passed through a linear layer to compute the updated
sequence representations si′ of each nucleotide as follows:

= +s s o o o oLinear(concat ( , , , ))i i h p i
h

i
h

i
hp

i
hp

, (8)

Here, ∥o⃗ihp∥ indicates the Euclidean norm of o⃗ihp. The updated
sequence embeddings si′ for each nucleotide i are subsequently
stacked together to obtain the embedding s′ for all nucleotides
in the RNA. Finally, a linear layer followed by a 2 layer fully
connected network implemented as a multilayer perceptron
(MLP) is used to obtain the final representation sf before
estimating nucleotide-wise lDDT scores as follows:

= +s s sMLP( )f (9)

2.4. Training, Validation, and Test Datasets. To curate
our training dataset, we first obtained the training dataset used
in trRosettaRNA12 containing 3, 632 RNA targets. We then
filtered this set by removing duplicate chains and discontin-
uous structures, separating monomers from complexes,
splitting multiple chains into single chains, and correcting
formatting issues in the coordinates files. We removed
sequences with length >200 nucleotides and ensured that
our training and test sets were nonredundant by running CD-
HIT-est36 with default parameter settings, which reduced the
training set to 1, 399 RNA targets. We generated 37 structural
models per target with a total of 51, 763 structural models for

the 1, 399 targets using a combination of different RNA 3D
structure prediction tools including recent deep learning-
enabled RNA structure prediction methods,11−15 physics-
based RNA folding,37 and structure perturbation using
PyRosetta.38 For the deep learning-enabled RNA structure
prediction methods, we used default parameter settings to
generate the structural models. Additionally, we generated one
model using SimRNA, selecting the first frame of the cluster
with a 3.5 Å RMSD threshold. Finally, each of the 6 structures
generated by DeepFoldRNA11 was relaxed by FastRelax
protocol39 within the PyRosetta framework38 with 5,000 and
10,000 steps aiming to introduce structural diversity in our
training set. The number of structural models generated by
each method is listed in Supplementary Table S1. Our test data
includes 30 independent RNAs, also collected from trRoset-
taRNA following the train and test splits of the original work.
We generated 3D structural models for each of these 30 RNAs
using the deep learning-enabled RNA structure prediction
methods.11−15 We also use 12 RNA targets from CASP15 as an
additional independent test set containing targets cleared for
public access as of December 20, 2022, where the
corresponding 3D structural models are collected directly
from the CASP15 Web site https://predictioncenter.org/
casp15/ based on the blind predictions submitted by various
participating groups in CASP15 RNA 3D structure prediction
challenge. In addition, we separately curated a validation set of
60 RNA targets for the ablation study and hyperparameter
selection from the Protein Data Bank (PDB)40 with
experimental structures released between January 1, 2022
and July 6, 2023. Such a date range was chosen to avoid any
overlap with our training dataset collected from trRosettaRNA
which used structures released before January 1, 2022. We
generated 25 structural models for each of these 60 RNAs
using the recent deep learning-based RNA structure prediction
methods.11−15 Supplementary Tables S2 and S3 list the
number of structural models per target used for our two test
sets Test30 and CASP15, respectively. The nucleotide-wise
ground truth lDDT distributions of our training and test sets
are shown in Supplementary Figures S3 and S4. We created a
reduced training subset consisting of 6, 872 structural models
for 1, 399 RNA targets through clustering41 for ablation study
and hyperparameter selection.
2.5. Training Details. To train our model, lociPARSE, we

obtained nucleotide-wise ground truth lDDT scores by
comparing the predicted structural models in our training
dataset against the corresponding experimental structures using
the docker version of OpenStructure.42 During the ground
truth lDDT computation, we enabled the option ‘−lddt-no-
stereochecks’ to skip stereochemical quality checks in its
calculation following the recent CASP assessment.4 lociPARSE
was implemented in PyTorch43 with the 1 loss function to
learn the mean absolute error between ground truth lDDT and
predictions on nucleotide level, thereby formulating the local
nucleotide-wise quality estimation as a regression task. We
trained our model using the Adam optimizer44 having
parameters β1 = 0.9 and β2 = 0.999 with a learning rate of
0.0001 and dropout rate of 0.1. The training process consists of
50 epochs on an 80-GB NVIDIA A100 GPU.
2.6. Competing Methods. lociPARSE is compared

against both traditional knowledge-based statistical potentials
(rsRNASP,20 RASP,22 DFIRE-RNA,23 and cgRNASP21) and
recent machine learning-based RNA scoring functions
(RNA3DCNN17 and ARES31). rsRNASP is an all-atom
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distance-dependent potential considering short and long-
ranged interactions present in RNA based on sequence
separation aiming to capture the hierarchical nature of RNA
folding.45 Ribonucleic Acids Statistical Potential (RASP) is
another all-atom statistical potential based on the averaging
reference state. Similar to rsRNASP, RASP also separates
interaction pairs into local and nonlocal categories and takes
into account the base stacking and base pairing interactions
present in RNA. DFIRE-RNA is yet another distance-scaled
statistical potential designed using a finite-ideal-gas reference
state. Finally, cgRNASP, a coarse-grained counterpart of
rsRNASP potential introduces three different variants of
coarse-grained potentials for RNA scoring. We have used the
3-bead representation of cgRNASP in this work which takes
into account P, C4′ and N atoms. The Atomic Rotationally
Equivariant Scorer (ARES) is an equivariant graph neural
network that scores RNA structures by identifying complex
structural motifs through equivariant convolutions. ARES
employs E3NN46 to predict the global RMSD of the structure.
Finally, RNA3DCNN uses 3D convolutional neural network to
predict the RMSD-like unfitness score of a nucleotide to its
surroundings by considering RNA 3D structure as a 3D image
and representing each nucleotide as an array of voxels. For
prediction, we used the model that was trained on samples
generated from both molecular dynamics (MD) and Monte
Carlo (MC) simulations. It is worth noting that except
lociPARSE, RNA3DCNN is the only other method that
estimates both local and global quality.
2.7. Performance Assessment. To assess the accuracy of

different aspects of quality estimation, we use a wide range of
performance measures including the ability to reproduce the
ground truth lDDT and all-atom RMSD scores both at the
global and local levels, rank predictions for a given target,
recognize the best predictions, and discriminate between
“good” and “bad” predictions. Our performance assessment
can be broadly grouped into two categories: global-level
assessment and per-target average assessment. The global level
assessment puts together the predicted scores of all the
structural models across all targets during performance
evaluation. In contrast, the per-target average assessment
evaluates the predictions for each target’s structures separately
against their corresponding ground truths and then averages
the results over all the targets. Since the global level assessment
puts all the targets together to evaluate, it is important to
length-normalize the estimated scores for the methods that
predict RMSD unfitness scores. For the same reason, we
length-normalize the ground truth all-atom RMSD metric
during scoring performance evaluation. For the length
normalization of RMSD in the range of (0−1], we use the
formulation of US-align47 as follows:

=

=
+ ( )

d L1.24 15 1.8

RMSD
1

1
d

0

norm
RMSD

2

3

0 (10)

Except for lociPARSE, all the other six competing methods
evaluated in this work estimate some form of structural
unfitness score with a lower value representing better structural
quality. ARES and RNA3DCNN estimate RMSD, whereas the
four other knowledge-based statistical potentials estimate the
potential energy of an RNA structural model. To ensure that
the estimated scores from all competing methods are

comparable, we length-normalize the predicted RMSD of
ARES and RNA3DCNN using eq 10 that maps the predictions
between (0−1] with higher values representing better
structural quality. For the knowledge-based statistical poten-
tials, we use min−max normalization to map the estimated
potential energy to a normalized score s between (0−1] and
use (1 − s) to recalibrate the score such that a higher value
represents better structural quality. We also length-normalize
the ground truth RMSD between (0−1] using eq 10. Our
method lociPARSE estimates the lDDT score between (0−1]
where higher values represent better structural quality.
Meanwhile, the ground truth lDDT is between (0−1] by
definition.
Our assessment metrics include both global and average per-

target Pearson’s (r), Spearman’s rank (ρ), and Kendall’s Tau
rank (τ) correlation coefficients between the estimated score of
each method and the ground truth lDDT as well as ground
truth all-atom RMSD where a higher correlation indicates
better performance. While Pearson’s r assumes a linear
relationship between variables and is sensitive to outliers,
Spearman’s ρ and Kendall’s τ account for nonlinear but
monotonic trends and are less affected by outliers. Also,
Kendall’s τ is particularly robust for small sample sizes and
many tied ranks. Therefore, reporting all three coefficients
provides a comprehensive assessment of the predicted quality
scores of different methods. Ground truth lDDT of the test set
targets are calculated using the docker version of Open-
Structure42 whereas the ground truth all-atom RMSD is
calculated using casp-rna pipeline.4 All the predicted quality
scores and the ground truth metrics are normalized between
(0−1] during scoring performance evaluation. Diff, another
assessment metric is calculated at the global level as the mean
absolute difference between the structural level estimated
scores (pMoL) of all the structures of all targets and their
corresponding ground truth lDDT or RMSD metrics. Per-
target loss or top-1 loss is calculated as the absolute difference
between the ground truth lDDT or RMSD of the structural
model ranked at the top by each method and the ground truth
lDDT or RMSD of the most accurate structural model for each
target which is then averaged over all targets to get the loss
value for each method over a test set. Lower values of diff and
loss, therefore, indicate better performance. To calculate the
local nucleotide-wise scoring performance in Table 5, we
accumulated all the nucleotide-wise predicted scores (pNuL)
and computed the coefficients and diff in the same manner as
in our global assessment. For RNA3DCNN, we adhered to the
method described in their work to scale the nucleotide-level
predicted RMSD in the range (0−1] before the evaluation. We
additionally performed receiver operating characteristics
(ROC) analysis using a lDDT threshold of 0.75 to separate
“good” and “bad” structural models, following.4 Consequently,
the area under the ROC curve (AUC) quantifies the ability of
a scoring function to distinguish good and bad models. Finally,
an average of all assessment metrics is taken to combine the
results of all the different metrics into a single composite
quality score, called Qc, defined as

= + + + +Q r D r L
1
5

( (1 ) (1 ) AUC)c g a (11)

where, rg = global Pearson’s r, D = global diff, ra = per-target
average Pearson’s r, L = average loss, and AUC = area under
the ROC curve. We use the composite quality score for
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ablation study and hyperparameter selection, where higher
values of Qc indicate better performance.

3. RESULTS
3.1. Performance on 30 Independent RNA Targets.

The performance of our new method lociPARSE and the other
competing methods on 30 independent RNA targets in terms
of ground truth as lDDT and RMSD is reported in Tables 1
and 2, respectively. Table 1 shows that lociPARSE consistently
outperforms all other tested methods across almost all
performance criteria when lDDT is used as the ground truth
metric. For instance, lociPARSE attains the highest global
Pearson’s r of 0.67 which is much better than the second-best
rsRNAsp (0.5). The same trend continues for global
Spearman’s ρ (lociPARSE: 0.71 vs the second-best score of
0.5 and global Kendall’s τ (lociPARSE: 0.55 vs the second-best
score of 0.36). Additionally, lociPARSE attains the lowest diff
of 0.06, which is lower than the second-best rsRNASP (0.11).
Furthermore, lociPARSE always delivers the highest per-target
average correlations. In terms of average lDDT loss, however,
DFIRE-RNA attains the lowest average loss (0.05). Mean-
while, lociPARSE, ARES, rsRNASP and RNA3DCNN are tied
for the second spot with a comparably low loss of 0.06. To
investigate the ability of lociPARSE to distinguish “good” and
“bad” models in comparison with the other tested methods
across all structural models for all 30 targets, we performed
receiver operating characteristics (ROC) analysis using a cutoff
of lDDT = 0.75 to differentiate “good” and “bad” models
following the CASP15 official assessment.4 Meanwhile, the
area under the ROC curve (AUC) quantifies the ability of a
method to differentiate “good” and “bad” models. Table 1
shows that lociPARSE achieves the highest AUC of 0.91,
which is noticeably better than the second-best AUC of 0.8 by
ARES, demonstrating a better distinguishability aspect of our

method. The ROC curves for all competing methods across
both test sets are provided in Supplementary Figure S6.
Since our method lociPARSE is trained to estimate the

lDDT scores, whereas methods such as ARES and
RNA3DCNN are trained to estimate the RMSD scores, to
ensure a fair performance evaluation, we perform an analogous
set of assessments using the all-atom RMSD as the ground
truth metric instead of lDDT. As reported in Table 2,
lociPARSE exhibits remarkable robustness and performance
resilience by achieving comparable correlations in both global
and per-target levels with the lowest per-target loss, even when
evaluated based on RMSD as the ground truth. To further
investigate whether each method can effectively sort and rank-
order the structures, we analyze the median lDDT and RMSD
ground truth metrics of top-1 and best of top-10 ranked
structural models from each method. As shown in Supple-
mentary Figures S1 and S2, lociPARSE achieves the highest
median top-1 lDDT score of 0.8 and the lowest median top-1
RMSD score of 1.91, demonstrating its effectiveness in
identifying the optimal structural model irrespective of the
choice of the ground truth metrics. Considering the best of
top-10 median scores, lociPARSE is only 0.01 points lower
than the highest median lDDT score and achieves the lowest
median RMSD of 1.73. In summary, the results demonstrate
that lociPARSE is effective in sorting and rank-ordering
structural models while being robust and versatile in terms of
the choice of the ground truth assessment metrics.
It is worth mentioning here that both the competing

machine learning-based scoring functions ARES and
RNA3DCNN exhibit inferior global diff values despite
attaining comparable performance in terms of per-target
averages. Meanwhile, DFIRE-RNA, the method attaining the
lowest average per-target lDDT loss, does not deliver top
performance in terms of global correlations in Table 1. That is,
there are complementary aspects of scoring and model quality

Table 1. Performance on 30 Independent RNA Targets Based on lDDT as the Ground Truth Metric, Sorted in Nonincreasing
Order of Global Pearson’s ra

method

global per-target average

r ↑ ρ ↑ τ ↑ diff ↓ AUC ↑ r ↑ ρ ↑ τ ↑ loss ↓
lociPARSE 0.67 0.71 0.55 0.06 0.91 0.77 0.75 0.64 0.06
rsRNASP 0.5 0.5 0.36 0.11 0.79 0.75 0.69 0.55 0.06
RASP 0.46 0.5 0.36 0.16 0.78 0.72 0.68 0.58 0.08
ARES 0.43 0.48 0.34 0.55 0.80 0.72 0.7 0.58 0.06
DFIRE-RNA 0.33 0.32 0.22 0.19 0.69 0.75 0.7 0.56 0.05
cgRNASP 0.27 0.19 0.13 0.15 0.60 0.12 0.07 0.07 0.07
RNA3DCNN 0.19 0.17 0.12 0.64 0.58 0.47 0.36 0.27 0.06

aValues in bold indicate the best performance.

Table 2. Performance on 30 Independent RNA Targets Based on All-Atom RMSD as the Ground Truth Metric, Sorted in
Nonincreasing Order of Global Pearson’s ra

method

global per-target average

r ↑ ρ ↑ τ ↑ diff ↓ r ↑ ρ ↑ τ ↑ loss ↓
lociPARSE 0.65 0.65 0.47 0.31 0.59 0.61 0.49 1.47
ARES 0.64 0.64 0.48 0.3 0.58 0.61 0.48 2.0
RASP 0.64 0.65 0.47 0.21 0.59 0.56 0.44 2.37
rsRNASP 0.63 0.65 0.47 0.26 0.52 0.52 0.37 1.93
DFIRE-RNA 0.54 0.53 0.39 0.22 0.49 0.49 0.35 1.88
cgRNASP 0.49 0.48 0.33 0.29 0.18 0.09 0.09 1.59
RNA3DCNN −0.11 −0.12 −0.07 0.38 0.06 0.12 0.11 2.13

aValues in bold indicate the best performance.
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estimation that can lead to performance trade-offs. Our new
method lociPARSE strikes an ideal balance to deliver a well-
rounded RNA scoring performance across a wide range of
assessment metrics. It is interesting to note that among the
other tested methods, the two machine learning-based scoring
functions ARES and RNA3DCNN show dramatically different
performance. While ARES is comparable to the traditional
knowledge-based statistical potentials in terms of global
correlations and per-target average correlations, RNA3DCNN
exhibits poor global and per-target average correlations, which
are much lower than most knowledge-based statistical
potentials. A similar trend can be observed between rsRNASP
and its coarse-grained counterpart cgRNASP, where rsRNASP
consistently attains good global and per-target average
correlations but cgRNASP falls short. That is, subtle
methodological differences such as the granularity of RNA
conformational space representation or the choice of the
neural network architecture can lead to dramatic differences in
performance. Notably, lociPARSE exhibits remarkable robust-
ness by being resilient to the choice of the ground truth
assessment metrics or complementary aspects of scoring
performance evaluation due to various factors including our
novel use of the locality-aware IPA architecture as a general-
purpose RNA scoring function, invariant set of features, and
the invariant nature of the lDDT metric that lociPARSE is
trained to estimate, leading to high-fidelity RNA scoring
performance.
3.2. Performance on CASP15 RNA Targets. Tables 3

and 4 report the performance of lociPARSE and the other
competing methods on 12 CASP15 RNA targets based on
lDDT and all-atom RMSD as the ground truth metrics,
respectively. As shown in Table 3, the performance of
lociPARSE for the global level assessment based on lDDT as
the ground truth metric is considerably better, having the
highest global Pearson’s r of 0.74, which is much better than

the second-best method ARES (0.33). lociPARSE is the
second-best method in terms of global diff, only slightly worse
by 0.01 points than the lowest global diff. lociPARSE also
achieves the highest AUC value of 0.96, outperforming the
second-best method rsRNASP (0.83) by a large margin,
demonstrating better distinguishability of lociPARSE in
separating “good” and “bad” models over a diverse set of
predicted structural models submitted by all CASP15
predictors. Furthermore, lociPARSE consistently attains higher
per-target average correlations than the other competing
methods and achieves the lowest average lDDT loss of 0.07,
which is lower than the second-best RNA3DCNN (0.09).
Table 4 reports the full set of results based on all-atom

RMSD as the ground truth metric that the two competing
machine learning-based scoring functions, ARES and
RNA3DCNN, are trained on. lociPARSE is better than both
methods in terms of both global and per-target correlations
with the lowest average RMSD loss but exhibits comparatively
higher global diff. The global correlations of lociPARSE are
noticeably better than all competing methods and comparable
to most of the energy-based methods in terms of per-target
assessment. It is interesting to note that DFIRE-RNA, the
method attaining the lowest lDDT loss in 30 independent
RNA targets, yields a poor lDDT loss (0.16) in CASP15. By
contrast, lociPARSE consistently attains low loss in both test
sets, indicating its ability to select the best model that
generalizes across different datasets. Supplementary Figures S1
and S2 further demonstrate that the median lDDT score of the
top-ranked structure on 12 CASP15 targets by lociPARSE is
0.69, higher than all other methods. In terms of best of top 10
predictions, lociPARSE is second-best with a median lDDT of
0.72 but jointly best in terms of median all-atom RMSD value
of 8.29. In summary, the results underscore the ability of
lociPARSE to consistently select high-quality structures from a
diverse pool of structural models.

Table 3. Performance on CASP15 RNA Targets Based on LDDT as the Ground Truth Metric, Sorted in Nonincreasing Order
of Global Pearson’s ra

method

global per-target average

r ↑ ρ ↑ τ ↑ diff ↓ AUC ↑ r ↑ ρ ↑ τ ↑ loss ↓
lociPARSE 0.74 0.72 0.55 0.12 0.96 0.73 0.66 0.52 0.07
ARES 0.33 0.35 0.25 0.27 0.78 0.55 0.53 0.42 0.13
RASP 0.33 0.42 0.3 0.17 0.80 0.55 0.54 0.42 0.17
rsRNASP 0.31 0.41 0.3 0.11 0.83 0.66 0.61 0.47 0.11
DFIRE-RNA 0.29 0.3 0.22 0.39 0.77 0.69 0.6 0.46 0.16
cgRNASP 0.29 0.32 0.24 0.12 0.80 0.59 0.5 0.37 0.11
RNA3DCNN 0 −0.01 −0.01 0.52 0.35 0.5 0.42 0.31 0.09

aValues in bold indicate the best performance.

Table 4. Performance on CASP15 RNA Targets Based on All-Atom RMSD as the Ground Truth Metric, Sorted in
Nonincreasing Order of Global Pearson’s ra

method

global per-target average

r ↑ ρ ↑ τ ↑ diff ↓ r ↑ ρ ↑ τ ↑ loss ↓
lociPARSE 0.37 0.34 0.24 0.58 0.33 0.32 0.24 9.74
ARES 0.15 0.11 0.09 0.23 0.22 0.25 0.18 11.83
rsRNASP 0.13 0.21 0.14 0.49 0.34 0.37 0.27 14.37
cgRNASP 0.11 0.13 0.09 0.41 0.28 0.31 0.23 14.79
RASP 0.1 0.09 0.07 0.63 0.18 0.2 0.15 16.79
DFIRE-RNA 0.06 0.11 0.09 0.86 0.32 0.37 0.27 15.31
RNA3DCNN 0.01 0.04 0.03 0.05 0.19 0.15 0.11 13.39

aValues in bold indicate the best performance.
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When nucleotide-wise quality is evaluated, lociPARSE is
orders of magnitude better than RNA3DCNN, the only other
method except for lociPARSE that can estimate per-nucleotide
score. For example, lociPARSE attains more than three times
higher global Pearson’s r, Spearman’s ρ, and Kendall’s τ than
RNA3DCNN, and achieves noticeably lower diff than that
attained by RNA3DCNN (Table 5). While in principle, the

nucleotide-wise scoring performance reported in Table 5
should be synchronized to the structural level performance
reported in Table 3 as it is the case for our method lociPARSE,
RNA3DCNN shows a discrepancy in this regard, possibly due
to inconsistencies in nucleotide-wise scoring performance.
Overall, lociPARSE delivers stable and consistent nucleotide-
wise scoring performance that translates to well-rounded
structural level performance.
3.3. Case Study. Figure 2 shows a representative example

of nucleotide-wise scoring performance using lociPARSE for a
top-ranked structural model submitted by the winning group
AIchemy_RNA2 (group 232) for the CASP15 target R1108
having a length of 69. The predicted nucleotide-wise lDDT
(pNuL) scores are in close agreement with the ground truth
lDDT with a high Pearson’s r of 0.89 (Figure 2a). Two local
problematic regions are estimated by lociPARSE in nucleotide
positions (19−27) and (59−63). These two local problematic
regions are visually noticeable when the predicted structural
model is aligned with the experimental structure.
The poorly modeled structural regions around the hairpin

loop in nucleotide positions (19−27) and part of the helix
strand in positions (59−63) are obvious even with simple
visual inspection (Figure 2b). By contrast, virtually all
nucleotides with high pNuL values are structurally well
modeled. A comparison with ARES on this target reveals the
benefit of nucleotide-wise lDDT prediction as employed by
our method over structural level RMSD prediction of ARES,

especially in the presence of irregular regions such as the loop
in nucleotide positions (19−27). The predicted RMSD value
by ARES is 7.8 Å which is noticeably higher than the ground
truth all-atom RMSD of 4.63 Å. However, a structural level
unfitness score alone fails to pinpoint the problematic regions
in the model contributing to the higher RMSD. In contrast,
lociPARSE demonstrates its strength by accurately estimating
the quality of each nucleotide, effectively identifying the
incorrectly modeled loop region in nucleotide positions (19−
27) highlighted in blue. To further assess whether the learned
representation in lociPARSE is consistent with the physical
principles of RNA 3D structure, we analyze the predicted
attention map extracted from one of the attention heads in the
final IPA layer of our trained model for this same structural
model. A side-by-side comparison against the base pairing
information extracted from the RNA 3D structure presented in
Supplementary Figure S5 shows a resemblance between the
two maps, indicating the effectiveness of the learned
representations by lociPARSE.
3.4. Ablation Study and Hyperparameter Selection.

To examine the relative importance of the features and
architectural hyperparameters adopted in lociPARSE, we
conduct ablation experiments by systematically varying
individual parameters during model training using the reduced
training set and evaluating the accuracy of the independent
validation set (Section 2.4). Table 6 reports the composite
quality score (Qc) defined in Section 2.7 of the full-fledged
version of lociPARSE serving as a baseline and its ablated
variants. The results demonstrate that all the parameters
adopted in the full-fledged version of lociPARSE positively
contribute to the overall accuracy achieved by lociPARSE. For
example, we notice a performance decline when we vary the
value of K used in the nearest neighbors for the locality
computation from K = 20 used in the baseline to K ∈ {5, 10,
30, 40}. Furthermore, to bias the attention weights as well as to
update scalar features, we make use of the pair features in the
form of nucleotide-nucleotide atomic distances between all
pairs of 3 atoms P, C4′ and N, encoded with Gaussian radial
basis functions (hereafter called pairφ(d)). We notice a
significant performance drop when pairφ(d) features are isolated
as well as changing the number of radial basis functions from
RBF = 16 used in the baseline to RBF ∈ {1, 2, 4, 8, 32}.
Similarly, we notice consistent performance decline from the
baseline configuration whenever we vary the network

Table 5. Nucleotide-Wise Scoring Performance on CASP15
Seta

method

nucleotide-wise

r ↑ ρ ↑ τ ↑ diff ↓
lociPARSE 0.72 0.73 0.53 0.15
RNA3DCNN 0.17 0.19 0.13 0.24

aValues in bold indicate the best performance.

Figure 2. Example of lociPARSE nucleotide-wise quality estimation for the CASP15 target R1108. (a) Predicted nucleotide-wise lDDT (pNuL) vs
the ground truth lDDT for the top-ranked structural model submitted by AIchemy_RNA2 (group 232). (b) Predicted structural model in rainbow
colored with color code ramping from blue to red for low to high pNuL values superimposed on the experimental structure in gray and two local
problematic regions are highlighted.
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architecture such as the number of IPA layers (Nlayers = L) or
various IPA hyperparameters (Nheads = H, Nquery points = Q,
Nvalue points = V), justifying our choice of the parameters
adopted in the full-fledged version of lociPARSE.

4. DISCUSSION
In this work, we developed lociPARSE, a locality-aware
invariant point attention model for scoring RNA 3D structures.
lociPARSE uses locality information derived from the RNA
atomic coordinates to define nucleotide-wise frames together
with its local atomic environment. This, coupled with the
invariant point attention architecture, allows for the simulta-
neous estimation of local quality in the form of predicted
nucleotide-wise lDDT (pNuL) scores which are then
aggregated over all nucleotides by taking an average to
estimate global structural correctness in the form of predicted
molecular-level lDDT (pMoL). Our empirical results demon-
strate the superiority of our method in scoring RNA 3D
structures compared to existing approaches.
Our locality-aware attention-based architecture can be

extended in several ways, including estimating other local
quality measures such as the Interaction Network Fidelity
(INF) score,48 which is a local interaction metric that captures
various types of base−base interactions in RNA. In fact, INF
and lDDT have been shown to correlate well in a near-linear
and size-independent relationship,4 suggesting that lDDT may
capture the subset of interactions measured in INF whereas
INF focuses on a selection of RNA-specific interactions. A
model with a very similar architecture as lociPARSE would
make an excellent candidate for jointly estimating INF and
lDDT, thereby capturing complementary aspects of local
quality. Further, a promising direction for future work is to
investigate the potential benefits of capturing the multistate
conformational landscape of RNA, since many RNA targets
exhibit conformational flexibility.4 The lDDT score can be
computed simultaneously against multiple reference structures
of the same RNA at the same time, without arbitrarily selecting
one reference structure for the target or removing parts that
show variability. Training our model using multireference
lDDT to capture different classes of conformations will allow
our scoring function to account for conformational flexibility
and pave the way to evaluate predictions of conformational
ensembles instead of just a single structure. One limitation of
our method is that it does not account for the stereochemical
quality and physical plausibility of the model being evaluated.
This is because, unlike proteins, the currently available
implementation of lDDT for RNA does not penalize
stereochemical violations. Using a customized version of
lDDT that incorporates stereochemical quality checks in its
calculation can address such limitations, and this aspect
remains an important future direction.
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