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Abstract

A scoring function that can reliably assess the accuracy of a 3D RNA structural model in the ab-
sence of experimental structure is not only important for model evaluation and selection but also
useful for scoring-guided conformational sampling. However, high-fidelity RNA scoring has proven to
be difficult using conventional knowledge-based statistical potentials and currently-available machine
learning-based approaches. Here we present lociPARSE, a locality-aware invariant point attention ar-
chitecture for scoring RNA 3D structures. Unlike existing machine learning methods that estimate
superposition-based root mean square deviation (RMSD), lociPARSE estimates Local Distance Differ-
ence Test (IDDT) scores capturing the accuracy of each nucleotide and its surrounding local atomic
environment in a superposition-free manner, before aggregating information to predict global structural
accuracy. Tested on multiple datasets including CASP15, lociPARSE significantly outperforms existing
statistical potentials (rsRNASP, cgRNASP, DFIRE-RNA, and RASP) and machine learning methods
(ARES and RNA3DCNN) across complementary assessment metrics. 1ociPARSE is freely available at
https://github.com/Bhattacharya-Lab/lociPARSE.
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1 Introduction

Computational prediction of RNA 3-dimensional structures from nucleotide sequence has garnered consid-
erable research effort over the past decade [1-8] and deep learning-enabled RNA 3D modeling has gained
significant attention in the recent past [9-13]. To facilitate practical applicability of predicted 3D models,
it is critical to have a scoring function that can reliably assess their global topology and local quality in the
absence of experimental structures [14,15]. Moreover, the ability of a scoring function to distinguish accu-
rate 3D models of previously unseen RNAs from misfolded alternatives plays an important role in guiding
conformation sampling towards the native state [16].

Existing methods for scoring RNA structures roughly belong to two categories: knowledge-based statistical
potentials and supervised machine learning. Various knowledge-based statistical potentials have been devel-
oped, both at all-atom and coarse-grained levels [17-21], using different simulated reference states [22-27].
However, reliably distinguishing accurate structural models of RNA from less accurate ones has proven to
be difficult, because the characteristics of energetically favorable RNA structures are not sufficiently well
understood and thus the reference states may deviate largely from the ideal one. Machine learning-based
methods [28,29] aim to overcome such limitation by learning to predict the accuracy of an RNA structural
model through supervised learning. Indeed, machine learning-based RNA scoring functions, trained to es-
timate the unfitness score either at the nucleotide level or at the structural level by learning to predict the
root mean square deviation (RMSD) from the unknown true structure, have been shown to be effective in
RNA-Puzzles blind structure prediction challenges [8].
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Despite the effectiveness, the existing machine learning methods do not consider some key factors that
can significantly improve the sensitivity of RNA scoring functions. First, global superposition-dependent
RMSD metric is not length normalized, affected by superposition, dominated by outliers in poorly modeled
structural regions, and does not take into account the accuracy of local atomic environment. RNA is a
flexible molecule in which irregular loops may affect RMSD measures and global superposition may not be
optimal, leading to scoring anomalies. Yet, virtually all existing machine learning-based RNA scoring func-
tions use RMSD as the ground truth during supervised training. Second, similar to other macromolecules,
RNA structures have no natural canonical orientation. As such, machine learning methods that are not
invariant to global Euclidean transformations such as rotation must account for this aspect of variation by
tweaking model architecture and/or parameters, which may affect their expressiveness and generalizability.
Third, in consideration of RNA as a flexible molecule in which interplay between various local structural
motifs define the global topology, an effective scoring function should not be strongly influenced by the
relative motions between the tertiary motifs. That is, the effects of relative movement between the motifs
should not lead to artificially unfavorable scores.

Using the Local Distance Difference Test (IDDT) [30] as the ground truth during supervised training is
an attractive alternative to the popular RMSD metric. 1DDT compares distances between atoms that are
nearby (within 15 A) in the experimental structure to the distances between those atoms in the predicted
structure and offers several advantages over RMSD. First, being superposition-free and based on rotation-
invariant properties of a structure, IDDT naturally preserves invariance with respect to the global Euclidean
transformations of the input RNA structure such as global rotations and translations. Second, IDDT mea-
sures the accuracy of local environment of the model in atomic detail, without being affected by superposition
or dominated by outliers in poorly modeled structural regions. Third, IDDT exhibits robustness to move-
ments between tertiary structural units such as domains in proteins that can generalize to RNA tertiary
motifs, provided a way can be found that ensures rigid motion between a set of local structural units is
invariant under global Euclidean transformations on the said units. A solution to this problem comes from
Invariant Point Attention (IPA) proposed in AlphaFold2 as part of the structural module [31]. TPA is a form
of attention that acts on a set of 3D point clouds and is invariant under global Euclidean transformations
on said points, where 3D point clouds are represented using local frames.

How can we capture the aforementioned benefits of IDDT in a neural network architecture for RNA scoring,
while maintaining invariance under global Euclidean transformations? Here, we provide such a solution by
developing a new attention-based architecture, called lociPARSE (locality-aware invariant Point Attention-
based RNA ScorEr), for scoring RNA 3D structures. Different from previous supervised learning approaches
that estimate the RMSD metric, our method estimates local nucleotide-wise IDDT scores that are then
aggregated over all nucleotides to predict global structural accuracy. Inspired by AlphaFold2, we define
nucleotide-wise frames parameterized by rotation matrices and translation vectors operating on predefined
RNA conformation at the local level. To model the local atomic environment of each nucleotide as captured
by IDDT, the IPA implementation used in the original AlphaFold2 has been modified to incorporate locality
information derived from the RNA atomic coordinates. By so doing, we are able to effectively capture the
accuracy of each nucleotide while considering the effect of its local atomic environment.

Our method significantly outperforms traditional knowledge-based statistical potentials as well as state-
of-the-art machine learning-based RNA scoring functions such as ARES [29] on multiple independent test
datasets including CASP15 blind test targets across a wide-range of performance measures. In particu-
lar, lociPARSE exhibits superior ability to reproduce the ground truth IDDT scores both at the global
and local levels, rank predictions for a given target with high fidelity, recognize the best predictions con-
sistently, and better discriminate between ‘good’ and ‘bad’ predictions. An open-source software im-
plementation of lociPARSE, licensed under the GNU General Public License v3, is freely available at
https://github.com/Bhattacharya-Lab/lociPARSE.
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2 Results

2.1 lociPARSE: locality-aware invariant point attention for RNA scoring

x>y
RNA 3D structure [L,3,3],[L,3] (predict

Figure 1: Overview of lociPARSE. Given a 3D RNA structure, we estimate the local nucleotide-wise IDDT scores
that are then aggregated over all nucleotides to predict global structural accuracy. (a) An input RNA 3D structure.
(b) The architecture of our locality-aware invariant point attention module to capture the accuracy of each nucleotide
and the effect of its local atomic environment. (c) By aggregating information at the level of nucleotide, we output
predicted nucleotide-wise IDDT (pNuL) scores before making a prediction at the level of the entire RNA structure
to output predicted molecular-level IDDT (pMoL).

An overview of our method, lociPARSE, is illustrated in Figure 1. The core component of our architecture,
outlined in Figure 1b, is an invariant point attention (IPA) module which utilizes the geometry of the input
RNA 3D structure to revise the nucleotide and pair features. This component is similar to the AlphaFold2’s
TPA formulation used in the structure module, but modified herein to incorporate locality information
derived from the RNA atomic coordinates. To do this, we introduce locality-aware geometry and edge-biased
attention (see Section 4.2.2) based on nucleotide pair adjacencies to capture the local atomic environment
of each nucleotide considering the Euclidean distances of the C4’ - C4’ atoms between nucleotide pairs. In
our setting, we define local nucleotide frames (see Section 4.2.1) from the Cartesian coordinates of C4’, P,
and glycosidic N atoms. The IPA partitions the nucleotide query and value features into 3D vectors and
transforms them from the target nucleotide’s local frame into a global reference frame before computing both
attention weights and the output of the attention mechanism. Further, we augment nucleotide-nucleotide
atomic distances between all pair of 3 atoms P, C4’ and N, encoded with Gaussian radial basis functions
as pair features (Section 4.1), and make further use of the pair features to bias attention weights and
update scalar features. Our network architecture consists of 4 IPA layers, with the IPA hyperparameters
(Nheads, € Nquery pointss Nvalue points) Set to (4,128,8,4) and we use 20 nearest neighbors for the locality
computation, determined through ablation experiments using an independent validation set (Section 2.6).
The output of the attention layer is invariant to the global Euclidean transformations such as global rotations
and translations of the input RNA. Finally, a linear layer followed by a 2 layer fully-connected network are
used to estimate the predicted nucleotide-wise IDDT scores (pNuL) before making a prediction at the level
of the entire molecule by aggregating nucleotide-level information, leading to predicted molecular-level IDDT
(pMoL), thus enabling our method to estimate both local and global quality of the input RNA 3D structure.

2.2 Experimental setup

For training and performance evaluation, we use existing and publicly available benchmark datasets. Our
training dataset contains 1,399 RNA targets collected from the training set used in the recent RNA 3D
structure prediction method trRosettaRNA [10]. We extracted the sequences from the 1,399 experimental
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structures and generated a total of about 52, 000 structural models using a combination of different RNA 3D
structure prediction tools including recent deep learning-enabled RNA structure prediction methods [9-13],
physics-based RNA folding [32], and experimental structure perturbation using PyRosetta [33] (see Section
4.3). Details of our training procedure are provided in Section 4.4. Our test data includes 30 independent
RNAs, also collected from trRosettaRNA following the train and test splits of the original work. We generated
3D structural models for each of these 30 RNAs using the deep learning-enabled RNA structure prediction
methods [9-13]. We also use 12 RNA targets from CASP15 as an additional independent test set containing
targets cleared for public access as of December 20, 2022, where the corresponding 3D structural models are
collected directly from the CASP15 website https://predictioncenter.org/caspl5/ based on the blind
predictions submitted by various participating groups in CASP15 RNA 3D structure prediction challenge. We
compare our method lociPARSE with traditional knowledge-based statistical potentials including rsRNASP
[17], ceRNASP [18], RASP [19] and DFIRE-RNA [20] as well as state-of-the-art machine learning-based
RNA scoring functions RNA3DCNN [28] and ARES [29]. To assess the accuracy of different aspects of
quality estimation, we use a wide-range of performance measures including the ability to reproduce the
ground truth IDDT scores both at the global and local levels, rank predictions for a given target, recognize
the best predictions, and discriminate between ‘good’ and ‘bad’ predictions. Details of competing methods
and evaluation metrics can be found in Section 4.5.

2.3 Performance on 30 independent RNA targets

Table 1 reports the performance of our new method lociPARSE and the other competing methods on 30
independent RNA targets. lociPARSE consistently outperforms all other tested methods across almost all
performance criteria. For instance, lociPARSE attains the highest global Pearson’s 7 of 0.67 which is much
better than the second-best ARES (0.54). The same trend continues for global Spearman’s p (lociPARSE:
0.72 vs. the second-best ARES: 0.63) and global Kendall’s 7 (lociPARSE: 0.54 vs. the second-best ARES:
0.46). Additionally, lociPARSE attains the lowest diff of 0.09, which is lower than the second-best rsSRNASP
(0.11). Furthermore, lociPARSE always delivers the highest per-target average correlations. In terms of
average IDDT loss, however, DFIRE-RNA attains the lowest average loss (0.05). Meanwhile, lociPARSE,
ARES, and rsRNASP are tied at the second spot with a comparably low loss of 0.06. Of note, ARES, the
second-best performing method after lociPARSE in terms of global correlations, exhibits poor diff. DFIRE-
RNA, the method attaining the lowest average IDDT loss, does not deliver top performance in terms of
global correlations. That is, there are complementary aspects of scoring and model quality estimation that
can lead to performance trade-offs. Our new method lociPARSE strikes an ideal balance to deliver top-notch
RNA scoring performance across a wide range of assessment metrics simultaneously.

Table 1: Performance on 30 independent RNA targets, sorted in decreasing
order of global Pearson’s r. Values in bold indicate the best performance.

Method Global . Per-target average

r 1 Pt 7+ Diff | 1 Pt 7+ Loss |
lociPARSE 0.67 0.72 0.54 0.09 0.77 0.74 0.61 0.06
ARES 0.54 0.63 046 0.19 0.73 0.7 0.58 0.06
rsRNASP 0.5 0.5 0.36  0.11 0.75 0.69 0.55 0.06
RASP 0.46 0.5 0.36 0.16 0.72 0.68 0.58 0.08
DFIRE-RNA 033 032 0.22 0.19 0.75 0.7 056 0.05
cgRNASP 0.27 0.19 0.13 0.15 0.12 0.07 0.07 0.07
RNA3DCNN -0.09 -0.06 -0.04 0.25 0.62 0.57 041 0.07

It is interesting to note that among the other tested methods, the two machine learning-based scoring func-
tion ARES and RNA3DCNN show dramatically different performance. While ARES is consistently better
than the traditional knowledge-based statistical potentials in terms of global correlations and compara-
ble in terms of per-target average correlations, RNA3DCNN exhibits poor global and per-target average


https://predictioncenter.org/casp15/
https://doi.org/10.1101/2023.11.04.565599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.04.565599; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

correlations, which are much lower than most knowledge-based statistical potentials. A similar trend can
be observed between rsRNASP and its coarse-grained counterpart cgRNASP, where rsRNASP consistently
attains good global and per-target average correlations but cgRNASP falls short. That is, subtle method-
ological differences such as the granularity of RNA conformational space representation or the choice of
the neural network architecture can lead to dramatic difference in performance. Meanwhile, the novel use
of locality-aware invariant point attention in lociPARSE substantially improves RNA scoring performance,
surpassing both machine learning-based scoring functions and knowledge-based statistical potentials.

2.4 Performance on CASP15 RNA targets

To investigate the ability of lociPARSE to distinguish ‘good’ and ‘bad’ models in comparison with the other
tested methods, where a threshold of IDDT > 0.75 is used to differentiate ‘good’” and ‘bad’ models following
CASP15 official assessment [7], we performed ROC analysis using all structural models for all targets in
CASP15. Figure 2a shows the ROC curves with AUC values. Once again, lociPARSE achieves the highest
AUC value of 0.96, which is much higher than the second-best method rsRNASP (0.83), demonstrating its
better performance in separating good and bad models compared to the others. Furthermore, as shown
in Figure 2b, lociPARSE attains the lowest average IDDT loss of 0.07, which is noticeably lower than the
second-best rsRNASP and cgRNASP (0.11). It is interesting to note that DFIRE-RNA, the method attaining
the lowest loss in 30 independent RNA targets, yields a poor loss (0.16) in CASP15. By contrast, lociPARSE
consistently attains low loss in both test sets, indicating its ability to select the best model that generalizes
across different datasets. Supplementary table S1 reporting the full set of assessment metrics for lociPARSE
against all other tested methods in the CASP15 set further demonstrates the performance generalizability
of lociPARSE, which consistently outperforms all other tested methods across almost all metrics.
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Figure 2: Distinguishability between ‘good’ and ‘bad’ models and best model selection performance on CASP15 set.
(a) Receiver operating characteristic (ROC) curves with the area under the curve (AUC) values reported, where a
threshold of IDDT > 0.75 is used to separate ‘good’ and ‘bad’ models. (b) Average top-1 IDDT loss.

Table 2: Local nucleotide-wise scoring performance on CASP15
set. Values in bold indicate the best performance.

Global
Method . o — Diff |
lociPARSE 0.73 0.74 0.53 0.14
RNA3DCNN 0.17 0.15 0.1 0.43

When local nucleotide-wise quality is evaluated, lociPARSE is orders of magnitude better than RNA3SDCNN,
the only other method except lociPARSE that can estimate per-nucleotide score for local quality assessment.
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For example, lociPARSE attains more than four times higher global Pearson’s r, Spearman’s p, and Kendall’s
7 than RNA3DCNN, and achieves less than one-third of the diff attained by RNASDCNN (Table 2). In
summary, lociPARSE represents a leap forward in terms of local nucleotide-wise scoring performance.

2.5 Case study

Figure 3 shows a representative example of local nucleotide-wise quality estimation using lociPARSE for a
top-ranked structural model submitted by the winning group Alchemy RNA2 (group 232) for the CASP15
target R1108 having length of 69. The predicted nucleotide-wise IDDT (pNulL) scores are in close agreement
with the ground truth IDDT with a high Pearson’s r of 0.89 (Figure 3a). Two local problematic regions are
estimated by lociPARSE in nucleotide positions (19 —27) and (59 — 63). These two local problematic regions
are visually noticeable when the predicted structural model is aligned to the experimental structure. The
poorly modeled structural regions around the hairpin loop in nucleotide positions (19 — 27) and part of the
helix strand in positions (59 — 63) are obvious even with simple visual inspection (Figure 3b). By contrast,
virtually all nucleotides with high pNuL values are structurally well modeled.

a
1.0
0.8
0.6
0.41
021 — ppT
—— pNuL

0 10 20 30 40 50 60 70
Nucleotide position

Figure 3: Example of lociPARSE local nucleotide-wise quality estimation for the CASP15 target R1108. (a) Pre-
dicted nucleotide-wise IDDT (pNuL) vs. the ground truth IDDT for the top-ranked structural model submitted by
Alchemy RNA2 (group 232). (b) The predicted structural model in rainbow colored with color code ramping from
blue to red for low to high pNuL values superimposed on the experimental structure in gray, and two local problematic
regions highlighted.

2.6 Ablation study and hyperparameter selection

To examine the relative importance of the features and architectural hyperparameters adopted in lociPARSE,
we conduct ablation experiments by systematically varying individual parameter during model training using
the reduced training set and evaluating the accuracy on the independent validation set (see Section 4.3).
Table 3 reports the composite quality score (Q.) defined in section 4.5 of the full-fledged version of lociPARSE
serving as a baseline and its ablated variants. The results demonstrate that all the parameters adopted in
the full-fledged version of lociPARSE positively contribute to the overall accuracy achieved by lociPARSE.
For example, we notice performance decline when we vary the value of K used in the nearest neighbors
for the locality computation from K = 20 used in the baseline to K € {5,10,30}. Furthermore, to bias
the attention weights as well as to update scalar features, we make use of the pair features in the form of
nucleotide-nucleotide atomic distances between all pair of 3 atoms P, C4’ and N, encoded with Gaussian
radial basis functions (hereafter called pair,4)). We notice a significant performance drop when pair, g
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features are isolated. Similarly, we notice consistent performance decline from the baseline configuration
whenever we vary the network architecture such as the number of IPA layers (Njgyers = L) or various IPA
hyperparameters (Npeaas = H, Nguery points = Q5 Nvalue points = V), justifying our choice of the parameters
adopted in the full-fledged version of lociPARSE.

Table 3: Validation set performance in terms of composite quality score (Q.) with
various settings of features and hyperparameters compared to the full-fledged version of
lociPARSE serving as a baseline. Values in bold indicate the best performance.

Settings Q. Hyperparamters Q. Hyperparamters Qe

Baseline Baseline Baseline

(K =20 w/ pairya) 0.824 (L =4, H=4) 0.824 (Q=8,V = 4) 0.824
K=5 w/ pair,q  0.806 L=2 0.814 Q=2 0.81
K =10w/ pairyqg  0.822 L=6 0.808 Q=4 0.81
K =30w/ pair,q  0.812 H=2 0.808 V=2 0.808
K =20 w/o pair,q  0.768 H=38 0.814 V=28 0.818

3 Discussion

In this work, we developed lociPARSE, a locality-aware invariant point attention model for scoring RNA
3D structures. lociPARSE uses locality information derived from the RNA atomic coordinates to de-
fine nucleotide-wise frames together with its local atomic environment. This, coupled with the invariant
point attention architecture, allows for the simultaneous estimation of local quality in the form of predicted
nucleotide-wise IDDT (pNulL) scores which are then aggregated over all nucleotides to estimate global struc-
tural correctness in the form of predicted molecular-level IDDT (pMoL). Our empirical results demonstrate
the superiority of our method in scoring RNA 3D structures compared to existing approaches.

Our locality-aware attention-based architecture can be extended in several ways, including estimating other
local quality measures such as the Interaction Network Fidelity (INF) score [34], which is a local interaction
metric that captures various types of base-base interactions in RNA. In fact, INF and IDDT have been shown
to correlate well in a near-linear and size-independent relationship [7], suggesting that IDDT may capture the
subset of interactions measured in INF whereas INF focuses on a selection of RNA-specific interactions. A
model with a very similar architecture as lociPARSE would make an excellent candidate for jointly estimat-
ing INF and IDDT, thereby capturing complementary aspects of local quality. Further, a promising direction
for future work is to investigate the potential benefits of capturing multi-state conformational landscape of
RNA, since many RNA targets exhibit conformational flexibility [7]. The IDDT score can be computed
simultaneously against multiple reference structures of the same RNA at the same time, without arbitrarily
selecting one reference structure for the target or removing parts that show variability. Training our model
using multi-reference IDDT to capture different classes of conformations will allow our scoring function to
account for conformational flexibility and pave the way to evaluate predictions of conformational ensembles
instead of just a single structure.

One limitation of our method is that it does not account for stereochemical quality and physical plausibility
of the model being evaluated. This is because unlike for proteins, the currently available implementation
of IDDT for RNA do not penalize for stereochemical violations. Using a customized version of IDDT that
incorporates stereochemical quality checks in its calculation can address such limitation, and this aspect
remains an important future direction.
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4 Methods

4.1 Model input

Our model uses only input features derived directly from nucleotide sequence and RNA 3D structural co-
ordinates. We use just the basic nucleotide-level encodings for our input. These include one-hot encoding
of the nucleotide (i.e., a binary vector of 5 entries indicating each of the 4 nucleotide types and one for non
standard nucleotide) and the relative position of the nucleotide in its sequence calculated as i/L (where i
is the nucleotide index and L is the sequence length). For our pair features, we use sequential separation
of a nucleotide pair and their spatial proximity information. The sequence separation i.e., the absolute
difference between the two nucleotide indices, is discretized into 5 bins and represented by one-hot encoding
where the first two bins correspond to self-loops and adjacent bonds respectively. Rest of the three bins
are defined based on three types of interactions depending on the sequence separation: short-range (2-5),
medium-range (6-24) and long-range (>24), similar to [35,36]. The other component of our pair features
includes nucleotide-nucleotide atomic distances between all pair of P, C4’ and glycosidic N atoms, encoded
with Gaussian radial basis functions. It is important to note that all of our nucleotide and pair features are
invariant in nature, consistent with the invariant layers of the IPA module.

4.2 Network architecture
4.2.1 Construction of local nucleotide frames

To perform invariant point attention on a set of 3D points, we represent each nucleotide in a geometric
abstraction using the concept of frames. Each nucleotide frame in the form of a tuple is defined as an
Euclidean transform T = (R,t) , where R € R3*3 is a rotation matrix and t € R® is the translation
vector that can be applied to transform a position in local coordinates (%j,cq1 € R?) to a position in global
coordinates (Xgiopal € R3) as:

iglobal =To ilocal
= (R; E) © ilocal (1)
= Rilocal + E

In our setting, we define local nucleotide frames from the Cartesian coordinates of P, C4’, and glycosidic N
atoms of the input RNA 3D structure and construct 3-bead coordinate frame using a Gram—Schmidt process
specified in Alphafold2 (Algorithm 21) that takes the input coordinates (scaled by 0.1) of P as x3, C4’ as
x5, and N as X3. Note that the translation vector t is assigned to the centre atom Xb.

4.2.2 Locality-aware invariant point attention

The formulation of locality-aware IPA used in our work combines sequence representation, s;, from each
nucleotide i of the input RNA, pair representation e;; of nucleotide ¢ with other nucleotides j based on
nucleotide pair adjacencies capturing the local atomic environment N of nucleotide i, where j € N is the
locality information derived from the RNA atomic coordinates. Consequently, the update function of the
IPA layer is as follows:

s;=s;+IPA (Sz‘» {sjtien:s {eij}jeNi> (2)

To perform attention on 3D point clouds, IPA derives query (q”), key (k;’ ) and value (v*) embeddings from
a linear projection of s; to a latent representation of dimension ¢ for each nucleotide i, where g, k? ,vh e R¢

and h € {1,... , Npeaq} which represents number of attention heads in the IPA module. 3D query, key

_h
and value points are also generated considering the local frame 7T; of each nucleotide i, where d?p ,kip €
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R3,p € {1,... , Nquery points} and V?p € R3p e {1,... , Nalue points }- The IPA module acts on a set of
frames (parameterized as Euclidean transforms of the local frame T;) and is invariant under global Euclidean
transformations Tyjope; On said frames. By performing locality-aware geometry and edge-biased attention,
the IPA module transforms the 3D points from the target nucleotide’s local frame into a global reference
frame for computing the attention weights as follows:

1 " =
a?j = softmaxj ('U)L <\/quh—rk? + bzhj — v ;UC Zp ’ T; o a?p _ Tj o kij )) (3)

where, be is the attention bias derived from the linear projection of e;; to hidden dimension ¢, weighting

factors wy, and w¢ are taken from the IPA formulation specified in AlphaFold2 and v € R is a learned scalar
value. The attention mechanism acting on a set of local frames ensures invariance under global Euclidean
transformations such as global rotations and translations of the input RNA due to the invariant nature of
{o-norm of a vector under such rigid transformations.

The attention weights are used to compute the outputs of the attention mechanism, while mapping them
back to the local frame and preserving invariance, as follows:

6 = Y ale, (@
of = X, aiv; (5)
J

5 =10 Y aly (1,097 )

The outputs of the attention mechanism are then concatenated and passed through a linear layer to compute
the updated sequence representations s; of each nucleotide as follows:

hp

7

I ; h b=
s; = s; + Linear <concath7p(oi ,0,,0

5 )) ™

The updated sequence embeddings s} for each nucleotide i are subsequently stacked together to obtain the
embedding s’ for all nucleotides in the RNA. Finally, a linear layer followed by a 2 layer fully-connected
network implemented as a multilayer perceptron (MLP) are used to obtain the final representation s/ before
estimating nucleotide-wise IDDT scores as follows:

s/ =§ + MLP(s') (8)

4.3 Training and validation datasets

To curate our training datatset, we first obtained the training dataset used in trRosettaRNA [10] containing
3,632 RNA targets. We then filtered this set by removing duplicate chains and discontinuous structures,
separating monomers from complexes, splitting multiple chains into single chains, and correcting formatting
issues in the coordinates files. We removed sequences with length > 200 nucleotides and ensured that our
training and test sets are non-redundant by running CD-HIT-est [37] with default parameter settings, which
reduced the training set to 1,399 RNA targets. We generated a total of about 52,000 structural models for
the 1,399 targets using a combination of different RNA 3D structure prediction tools including recent deep
learning-enabled RNA structure prediction methods [9-13], physics-based RNA folding [32], and experimental
structure perturbation using PyRosetta [33]. In addition, we separately curated a validation set for ablation
study and hyperparameter selection from the Protein Data Back (PDB) [38] with experimental structures
released between January 1, 2022 and July 6, 2023. Such a date range was chosen to avoid any overlap with
our training dataset collected from trRosettaRNA which used structures released before January 1, 2022.
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Once again, we used CD-HIT-est with default parameter settings to ensure non-redundancy of the validation
dataset, resulting in 60 RNA targets. We generated 3D structural models for each of these 60 RNAs using
the recent deep learning-based RNA structure prediction methods [9-13]. We created a reduced training
subset consisting of 6, 872 structural models for 1,399 RNA targets through clustering [39] for ablation study
and hyperparameter selection.

4.4 Training detalils

To train our model, lociPARSE, we obtained nuculeotide-wise ground truth IDDT scores by comparing
the predicted structural models in our training dataset against the corresponding experimental structures
using the docker version of OpenStructure [40] available at https://git.scicore.unibas.ch/schwede/
openstructure/-/tree/master/docker. During the ground truth IDDT computation, we enabled the
option ‘~lddt-no-stereochecks’ to skip stereochemical quality checks in its calculation following the recent
CASP assessment in [7]. lociPARSE was implemented in PyTorch [41] with £1 loss function to learn the
mean absolute error between ground truth IDDT and predictions on nucleotide level, thereby formulating
the local nuculeotide-wise quality estimation as a regression task. We trained our model using the Adam
optimizer [42] having parameters 51 = 0.9 and $2 = 0.999 with a learning rate of 0.001 and dropout rate of
0.1. The training process consists of 50 epochs on an 80-GB NVIDIA A100 GPU.

4.5 Competing methods and evaluation metrics

lociPARSE is compared against both traditional knowledge-based statistical potentials (rsRNASP [17],
RASP [19], DFIRE-RNA [20], and cgRNASP [18]) and recent machine learning-based RNA scoring functions
(RNA3DCNN [28] and ARES [29]). rsRNASP is an all-atom distance-dependent potential considering short
and long-ranged interactions present in RNA based on sequence separation aiming to capture the hierarchical
nature of RNA folding [43]. Ribonucleic Acids Statistical Potential (RASP) is another all-atom statistical
potential based on the averaging reference state. Similar to rsRNASP, RASP also separates interaction pairs
into local and non-local categories and takes into account the base stacking and base pairing interactions
present in RNA. DFIRE-RNA is yet another distance-scaled statistical potential designed using finite-ideal-
gas reference state. Finally cgRNASP, a coarse-grained counterpart of rsRNASP potential introduces three
different variants of coarse-grained potentials for RNA scoring. We have used the 3-bead representation of
¢gRNASP in this work which takes into account P, C4’ and N atoms. The Atomic Rotationally Equivariant
Scorer (ARES) is a equivariant graph neural network which scores RNA structures by identifying complex
structural motifs through equivariant convolutions. ARES employs E3NN [44] to predict the global RMSD
of the structure. Finally, RNA3DCNN uses 3D convolutional neural network to predict the RMSD-like
unfitness score of a nucleotide to its surroundings by considering RNA 3D structure as a 3D image and
representing each nucleotide as an array of voxels. For prediction, we used the model that was trained on
samples generated from both molecular dynamics (MD) and Monte Carlo (MC) simulations. It is worth
noting that except lociPARSE, RNA3DCNN is the only other method that estimates both local and global
quality.

Our assessment metrics include global and average per-target Pearson (r), Spearman rank (p) and Kendall’s
Tau rank (7) correlation coeflicients between the estimated score and the ground truth IDDT, computed
both between the predicted molecular-level IDDT (pMoL) and ground truth IDDT for the overall structure
as well as between the predicted nucleotide-wise IDDT scores (pNuL) and ground truth IDDT for individual
nucleotides. Meanwhile, a higher correlation indicates better performance. Diff, another assessment metric,
is calculated at the global level as the mean absolute difference between pMoL and ground truth IDDT. Loss
or top-1 IDDT loss is calculated as the absolute difference between the ground truth IDDT of the structural
model ranked at the top by pMoL and the ground truth IDDT of the most accurate structural model for
each target averaged over all targets. Lower values of diff and loss, therefore, indicate better performance.
We additionally perform receiver operating characteristics (ROC) analysis using a IDDT threshold of 0.75
to separate ‘good’ and ‘bad’ structural models, following [7]. Consequently, the area under the ROC curve
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(AUC) quantifies the ability of a scoring function to distinguish good and bad models. Finally, an average
of all assessment metrics is taken to combine the results of all the different metrics into a single composite
quality score, called Q., defined as:

QC:%(rg+(1_p)+ra+(1—L)+AUc) (9)

where, 74 = global Pearson’s 7, D = global diff, r, = per-target average Pearson’s r, L = average loss, and
AUC = area under the ROC curve. We use the composite quality score for ablation study and hyperparam-
eter selection, where higher values of Q). indicate better performance.
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