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ABSTRACT: A scoring function that can reliably assess the
accuracy of a 3D RNA structural model in the absence of
experimental structure is not only important for model evaluation
and selection but also useful for scoring-guided conformational
sampling. However, high-fidelity RNA scoring has proven to be
difficult using conventional knowledge-based statistical potentials
and currently available machine learning-based approaches. Here,
we present lociPARSE, a locality-aware invariant point attention
architecture for scoring RNA 3D structures. Unlike existing
machine learning methods that estimate superposition-based
root-mean-square deviation (RMSD), lociPARSE estimates Local
Distance Difference Test (IDDT) scores capturing the accuracy of
each nucleotide and its surrounding local atomic environment in a
superposition-free manner, before aggregating information to predict global structural accuracy. Tested on multiple datasets
including CASP1S, 1ociPARSE significantly outperforms existing statistical potentials (rsSRNASP, cgRNASP, DFIRE-RNA, and
RASP) and machine learning methods (ARES and RNA3DCNN) across complementary assessment metrics. lociPARSE is freely
available at https://github.com/Bhattacharya-Lab/lociPARSE.

1.0

locality-aware invariant Point Attention-based RNA ScorEr

1. INTRODUCTION unfitness score either at the nucleotide level or at the structural
level by learning to predict the root-mean-square deviation

Computational prediction of RNA 3-dimensional structures
(RMSD) from the unknown true structure, have been shown

from nucleotide sequence has garnered considerable research

effort over the past decade,'”'® and deep learning-enabled to be effective in RNA-Puzzles blind structure prediction
RNA 3D modeling has gained significant attention in the challenges.”
recent past.''~"> To facilitate the practical applicability of Despite the effectiveness, the existing machine learning
predicted 3D models, it is critical to have a scoring function methods do not consider some key factors that can
that can reliably assess their global topologgr and local quality significantly improve the sensitivity of RNA scoring functions.
in the absence of experimental structures.'°~'® Moreover, the First, the global superposition-dependent RMSD metric is not
ability of a scoring function to distinguish accurate 3D models length normalized, is affected by superposition, is dominated
of previously unseen RNAs from misfolded alternatives plays by outliers in poorly modeled structural regions, and does not
an important role in guiding conformation sampling toward take into account the accuracy of the local atomic environ-
the native state. ment. RNA is a flexible molecule in which irregular loops may
Existing methods fOI' scoring RNA structures roughly belong aﬁect RMSD measures and global superposition may not be
to two categories: knowledge-based statistical potentials and optimal, leading to scoring anomalies. Yet, virtually all existing
supervised machine learning. Various knowledge-based stat- machine learning-based RNA scoring functions use RMSD as
istical potentials have been developed, both at all-atom and the ground truth during supervised training. Second, similar to

coarse-grained levels,°™>* using different simulated reference
states.>> >° However, reliably distinguishing accurate structural
models of RNA from less accurate ones has proven to be
difficult because the characteristics of energetically favorable
RNA structures are not sufficiently well understood and thus
the reference states may deviate largely from the ideal one.
Machine learning-based methods'”*" aim to overcome such
limitations by learning to predict the accuracy of an RNA
structural model through supervised learning. Indeed, machine
learning-based RNA scoring functions, trained to estimate the

other macromolecules, RNA structures have no natural
canonical orientation ie., the same RNA structure can be
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Figure 1. Overview of lociPARSE. Given a 3D RNA structure, we estimate the local nucleotide-wise IDDT scores that are then aggregated over all
nucleotides to predict global structural accuracy. (a) Input RNA 3D structure. (b) Architecture of our locality-aware invariant point attention (IPA)
module to capture the accuracy of each nucleotide and the effect of its local atomic environment. (c) By aggregating information at the level of
nucleotide, we output predicted nucleotide-wise IDDT (pNuL) scores before making a prediction at the level of the entire RNA structure to output

predicted molecular-level IDDT (pMoL).

rotated in space without affecting its biological function, thus
allowing a structure to be represented in any orientation. As
such, machine learning methods that are not invariant to global
Euclidean transformations such as rotation must account for
this aspect of variation by tweaking model architecture and/or
parameters, which may affect their expressiveness and
generalizability. Third, in consideration of RNA as a flexible
molecule in which interplay between various local structural
motifs defines the global topology, an effective scoring function
should not be strongly influenced by the relative motions
between the tertiary motifs. That is, the effects of relative
movement between the motifs should not lead to artificially
unfavorable scores.

Using the Local Distance Difference Test (IDDT)*” as the
ground truth during supervised training is an attractive
alternative to the popular RMSD metric. IDDT compares
distances between atoms that are nearby (within 15 A) in the
experimental structure to the distances between those atoms in
the predicted structure and offers several advantages over
RMSD. First, being superposition-free and based on rotation-
invariant properties of a structure, IDDT naturally preserves
invariance with respect to the global Euclidean transformations
of the input RNA structure such as global rotations and
translations. Second, IDDT measures the accuracy of the local
environment of the model in atomic detail, without being
affected by superposition or dominated by outliers in poorly
modeled structural regions. Third, IDDT exhibits robustness to
movements between tertiary structural units such as domains
in proteins that can generalize to RNA tertiary motifs, provided
a way can be found that ensures rigid motion between a set of
local structural units is invariant under global Euclidean
transformations on the said units. A solution to this problem
comes from Invariant Point Attention (IPA) proposed in
AlphaFold2 as part of the structural module.” IPA is a form of
attention that acts on a set of 3D point clouds and is invariant
under global Euclidean transformations on said points, where
3D point clouds are represented using local frames.

How can we capture the aforementioned benefits of IDDT
in a neural network architecture for RNA scoring, while
maintaining invariance under global Euclidean transforma-
tions? Here, we provide such a solution by developing a new
attention-based architecture, called lociPARSE (locality-aware
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invariant Point Attention-based RNA ScorEr), for scoring
RNA 3D structures. Different from previous supervised
learning approaches that estimate the RMSD metric, our
method estimates local nucleotide-wise IDDT scores that are
then aggregated over all nucleotides to predict global structural
accuracy. Inspired by AlphaFold2, we define nucleotide-wise
frames parameterized by rotation matrices and translation
vectors operating on predefined RNA conformation at the
local level. To model the local atomic environment of each
nucleotide as captured by IDDT, the IPA implementation used
in the original AlphaFold2 has been modified to incorporate
locality information derived from the RNA atomic coordinates.
By so doing, we are able to effectively capture the accuracy of
each nucleotide while considering the effect of its local atomic
environment. It is worth mentioning here that, although an
RNA 3D structure prediction method that uses AlphaFold2-
inspired IPA architecture can self-estimate the quality of its
own predicted structure given an input RNA sequence, our
method is the first general-purpose RNA scoring method that
is capable of estimating the quality of any input RNA 3D
structure using our modified implementation of AlphaFold2’s
IPA architecture.

Our method significantly outperforms traditional knowl-
edge-based statistical potentials as well as state-of-the-art
machine learning-based RNA scoring functions such as
ARES’ on multiple independent test datasets including
CASP1S blind test targets across a wide range of performance
measures. In particular, lociPARSE exhibits superior ability to
reproduce the ground truth IDDT scores both at the global
and local levels, rank predictions for a given target with high
fidelity, recognize the best predictions consistently, and better
discriminate between “good” and “bad” predictions. An open-
source software implementation of lociPARSE, licensed under
the GNU General Public License v3, is freely available at
https://github.com/Bhattacharya-Lab/lociPARSE.

2. MATERIALS AND METHODS

2.1. lociPARSE: Locality-aware Invariant Point Atten-
tion for RNA Scoring. An overview of our method,
lociPARSE, is illustrated in Figure 1. The core component of
our architecture, outlined in Figure 1b, is an invariant point
attention (IPA) module that utilizes the geometry of the input

https://doi.org/10.1021/acs.jcim.4c01621
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RNA 3D structure to revise the nucleotide and pair features.
This component is similar to the AlphaFold2’s IPA
formulation used in the structure module, but modified herein
to incorporate locality information derived from the RNA
atomic coordinates. To do this, we introduce locality-aware
geometry and edge-biased attention (Section 2.3.2) to convert
nucleotide pair features to edge adjacencies by considering a
set of k-nearest neighbor nucleotides to capture the local
atomic environment of each nucleotide based on the Euclidean
distances of the C4’'—C4’ atoms between nucleotide pairs. In
our setting, we define local nucleotide frames (Section 2.3.1)
from the Cartesian coordinates of C4’, P, and glycosidic N
atoms. The IPA partitions the nucleotide query and value
features into 3D vectors and transforms them from the target
nucleotide’s local frame into a global reference frame before
computing both attention weights and the output of the
attention mechanism. Further, we augment nucleotide-
nucleotide atomic distances between all pairs of 3 atoms P,
C4’' and N, encoded with Gaussian radial basis functions as
pair features (Section 2.2), and make further use of the pair
features to bias attention weights and update scalar features.
Our network architecture consists of 4 IPA layers, with the IPA
hyperparameters (Nheads) 6 Nquery points? Nvalue pomts) set to (4
128, 8, 4) and we use 20 nearest neighbors for the locality
computation, determined through ablation experiments using
an independent validation set (Section 3.4). The output of the
attention layer is invariant to the global Euclidean trans-
formations such as global rotations and translations of the
input RNA. Finally, a linear layer followed by a two-layer fully
connected network is used to estimate the predicted
nucleotide-wise IDDT (pNuL) scores. These nucleotide-level
pNuL predictions are then aggregated over all nucleotides by
taking an average to estimate the predicted molecular-level
IDDT (pMoL), enabling our method to estimate both local
and global qualities of the input RNA 3D structure.

2.2. Model Input. Our model uses only input features
derived directly from a nucleotide sequence and RNA 3D
structural coordinates. We use just the basic nucleotide-level
encodings for our input. These include one-hot encoding of
the nucleotide (i.e., a binary vector of S entries indicating each
of the 4 nucleotide types and one for nonstandard nucleotides
such as ‘T or modified nucleotides) and the relative position
of the nucleotide in its sequence calculated as i/L (where i is
the nucleotide index and L is the sequence length). For our
pair features, we use the index i of a nucleotide’s partner in
sequence and the corresponding 3D coordinates, quantified by
sequential separation and spatial proximity information. We do
not consider the nucleotide type of the partner as a pair
feature. The sequence separation i.e., the absolute difference
between the two nucleotide indices is discretized into S bins
and represented by one-hot encoding where the first two bins
correspond to self-loops and adjacent bonds, respectively. The
rest of the three bins are defined based on three types of
interactions depending on the sequence separation: short-
range (2—5), medium-range (6—24) and long-range (>24),
similar to.”**> The other component of our pair features
includes nucleotide-nucleotide atomic distances between all
pairs of P, C4’ and glycosidic N atoms, encoded with radial
basis functions. The radial basis functions are defined based on
the distance from a reference point, making them suitable for
capturing distance-based similarities. We used Gaussian radial
basis functions to encode the interatomic distances in the
following manner. For a nucleotide pair (i, j), at first, k = 9
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distances df-j- are calculated because of all possible combinations
among the set of 3 atoms P, C4" and N. Then, the set of all dfj-
values, D is encoded using Gaussian radial basis function as
follows:

D, = linspace(D,,, Doy RBF)
D . — D,
Do_ — max min
RBF
D -D,Y
Dygp = exp| — D
’ (1)
where, RBF = 16 is the number of radial basis functions, a

value chosen based on the ablation experiment presented in
Table 6 on an independent validation set. As such, D, is a set
of 16 linearly spaced values between D, = 0 and D,,,, = 100,
which indicates the minimum and maximum interatomic
distances, respectively. The output Dggg contains 16 encoded
distance pair features for each distance df; It is important to
note that all our nucleotide and pair features are invariant,
consistent with the invariant layers of the IPA module.

2.3. Network Architecture. 2.3.1. Construction of Local
Nucleotide Frames. To perform invariant point attention on a
set of 3D points, we represent each nucleotide in a geometric
abstraction using the concept of frames. Each nucleotide frame
in the form of a tuple is defined as a Euclidean transform T =
(R, ?), where R € R s a rotation matrix and t € R? is the
translation vector that can be applied to transform a position in

local coordinates (Xj,.q € R?) to a position in global
coordinates (?(global €R?) as

- —To%
Xglobal - Xiocal

_)
= (R) t )OE)Iocal

— b d
=R Xlocal + t (2)

In our setting, we define local nucleotide frames from the
Cartesian coordinates of P, C4’, and glycosidic N atoms of the
input RNA 3D structure and construct 3-bead coordinate
frame using a Gram—Schmidt process specified in Alphafold2
(Algorlthm 21) that takes the 1nput coordinates (scaled by 0.1)
of P as xl, C4' as X,, and N as x3 Note that the translation
vector t is assigned to the center atom X,.

2.3.2. Locality-aware Invariant Point Attention. The
formulation of locality-aware IPA used in our work combines
sequence representation, s, from each nucleotide i of the input
RNA, pair representation e; of nucleotide i with other
nucleotides j based on nucleotide pair adjacencies capturing
the local atomic environment N of nucleotide i, where j € N,
is the locality information derived from the RNA atomic
coordinates. Consequently, the update function of the IPA
layer is as follows:

s; = s; + IPA(s, {sj}jEN,f {eij}je/\() (3)

To perform attention on 3D point clouds, IPA derives query
(q!), key (K) and value (v/) embeddings from a linear
projection of s; to a latent representation of dimension ¢ for
each nucleotide i, where q", K, v/ €R‘and h € {1, - Nyoa}
which represents the number of attention heads in the IPA
module. 3D query, key and value points are also generated
considering the local frame T; of each nucleotide i, where ql f

https://doi.org/10.1021/acs.jcim.4c01621
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Thp 3 I 3
ki € R) P € {1) Nquerypoints} and i € RJ P € {1)
Nyae points)- The IPA module acts on a set of frames
(parameterized as Euclidean transforms of the local frame
T;) and is invariant under global Euclidean transformations
Tyioba On said frames. By performing locality-aware geometry
and edge-biased attention, the IPA module transforms the 3D
points from the target nucleotide’s local frame into a global

reference frame for computing the attention weights as follows:

h

L yon, 4k
a; =50ftmaxj(wL(fqi kj + b

2

Y ||mea - kY| )
b (4)

h
Y We
2

where bf}‘. is the attention bias derived from the linear projection
of e; to hidden dimension ¢, weighting factors wy, and w are
taken from the IPA formulation specified in AlphaFold2 and r
€ R is a learned scalar value. The attention mechanism acting
on a set of local frames ensures invariance under global
Euclidean transformations such as global rotations and
translations of the input RNA due to the invariant nature of
I,-norm of a vector under such rigid transformations.

The attention weights are used to compute the outputs of
the attention mechanism while mapping them back to the local
frame and preserving invariance, as follows:

~h h
o/ = age;

j Q)
h h
Oi = Z aq V]
j (6)
hp - h hp
S =10 ) af(Tov )
j (7)

The outputs of the attention mechanism are then concatenated
and passed through a linear layer to compute the updated
sequence representations s; of each nucleotide as follows:

DI

Here, ||3f’p || indicates the Euclidean norm of 35"’. The updated
sequence embeddings s;’ for each nucleotide i are subsequently
stacked together to obtain the embedding s’ for all nucleotides
in the RNA. Finally, a linear layer followed by a 2 layer fully
connected network implemented as a multilayer perceptron
(MLP) is used to obtain the final representation s’ before
estimating nucleotide-wise IDDT scores as follows:

I 4

—hp
ir0i) 0, (|0,

s; = s; + Linear(concat;, (5

s/ = s + MLP(s") 9)

2.4. Training, Validation, and Test Datasets. To curate
our training dataset, we first obtained the training dataset used
in trRosettaRNA'” containing 3, 632 RNA targets. We then
filtered this set by removing duplicate chains and discontin-
uous structures, separating monomers from complexes,
splitting multiple chains into single chains, and correcting
formatting issues in the coordinates files. We removed
sequences with length >200 nucleotides and ensured that
our training and test sets were nonredundant by running CD-
HIT-est™® with default parameter settings, which reduced the
training set to 1, 399 RNA targets. We generated 37 structural
models per target with a total of 51, 763 structural models for
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the 1, 399 targets using a combination of different RNA 3D
structure prediction tools including recent deep learning-
enabled RNA structure prediction methods,'' ™" physics-
based RNA folding,‘}’7 and structure perturbation using
PyRosetta.”® For the deep learning-enabled RNA structure
prediction methods, we used default parameter settings to
generate the structural models. Additionally, we generated one
model using SimRNA, selecting the first frame of the cluster
with a 3.5 A RMSD threshold. Finally, each of the 6 structures
generated by DeepFoldRNA'' was relaxed by FastRelax
protocol®” within the PyRosetta framework™ with 5,000 and
10,000 steps aiming to introduce structural diversity in our
training set. The number of structural models generated by
each method is listed in Supplementary Table S1. Our test data
includes 30 independent RNAs, also collected from trRoset-
taRNA following the train and test splits of the original work.
We generated 3D structural models for each of these 30 RNAs
using the deep learning-enabled RNA structure prediction
methods.'' ™" We also use 12 RNA targets from CASP1S as an
additional independent test set containing targets cleared for
public access as of December 20, 2022, where the
corresponding 3D structural models are collected directly
from the CASP1S Web site https://predictioncenter.org/
casplS/ based on the blind predictions submitted by various
participating groups in CASP15 RNA 3D structure prediction
challenge. In addition, we separately curated a validation set of
60 RNA targets for the ablation study and hyperparameter
selection from the Protein Data Bank (PDB)* with
experimental structures released between January 1, 2022
and July 6, 2023. Such a date range was chosen to avoid any
overlap with our training dataset collected from trRosettaRNA
which used structures released before January 1, 2022. We
generated 25 structural models for each of these 60 RNAs
using the recent deep learning-based RNA structure prediction
methods."' ™" Supplementary Tables S2 and S3 list the
number of structural models per target used for our two test
sets Test30 and CASP1S, respectively. The nucleotide-wise
ground truth IDDT distributions of our training and test sets
are shown in Supplementary Figures S3 and S4. We created a
reduced training subset consisting of 6, 872 structural models
for 1, 399 RNA targets through clustering”' for ablation study
and hyperparameter selection.

2.5. Training Details. To train our model, lociPARSE, we
obtained nucleotide-wise ground truth IDDT scores by
comparing the predicted structural models in our training
dataset against the corresponding experimental structures using
the docker version of OpenStructure.*” During the ground
truth IDDT computation, we enabled the option ‘—lddt-no-
stereochecks’ to skip stereochemical quality checks in its
calculation following the recent CASP assessment.” lociPARSE
was implemented in PyTorch® with the £1 loss function to
learn the mean absolute error between ground truth IDDT and
predictions on nucleotide level, thereby formulating the local
nucleotide-wise quality estimation as a regression task. We
trained our model using the Adam optimizer® having
parameters f1 = 0.9 and 2 = 0.999 with a learning rate of
0.0001 and dropout rate of 0.1. The training process consists of
50 epochs on an 80-GB NVIDIA A100 GPU.

2.6. Competing Methods. lociPARSE is compared
against both traditional knowledge-based statistical potentials
(rsSRNASP,”” RASP,”> DFIRE-RNA,”* and cgRNASP”') and
recent machine learning-based RNA scoring functions
(RNA3DCNN'" and ARES’'). rsRNASP is an all-atom

https://doi.org/10.1021/acs.jcim.4c01621
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distance-dependent potential considering short and long-
ranged interactions present in RNA based on sequence
separation aiming to capture the hierarchical nature of RNA
folding."® Ribonucleic Acids Statistical Potential (RASP) is
another all-atom statistical potential based on the averaging
reference state. Similar to rsRNASP, RASP also separates
interaction pairs into local and nonlocal categories and takes
into account the base stacking and base pairing interactions
present in RNA. DFIRE-RNA is yet another distance-scaled
statistical potential designed using a finite-ideal-gas reference
state. Finally, cgRNASP, a coarse-grained counterpart of
rsRNASP potential introduces three different variants of
coarse-grained potentials for RNA scoring. We have used the
3-bead representation of cgRNASP in this work which takes
into account P, C4’ and N atoms. The Atomic Rotationally
Equivariant Scorer (ARES) is an equivariant graph neural
network that scores RNA structures by identifying complex
structural motifs through equivariant convolutions. ARES
employs E3NN to predict the global RMSD of the structure.
Finally, RNA3DCNN uses 3D convolutional neural network to
predict the RMSD-like unfitness score of a nucleotide to its
surroundings by considering RNA 3D structure as a 3D image
and representing each nucleotide as an array of voxels. For
prediction, we used the model that was trained on samples
generated from both molecular dynamics (MD) and Monte
Carlo (MC) simulations. It is worth noting that except
lociPARSE, RNA3DCNN is the only other method that
estimates both local and global quality.

2.7. Performance Assessment. To assess the accuracy of
different aspects of quality estimation, we use a wide range of
performance measures including the ability to reproduce the
ground truth IDDT and all-atom RMSD scores both at the
global and local levels, rank predictions for a given target,
recognize the best predictions, and discriminate between
“good” and “bad” predictions. Our performance assessment
can be broadly grouped into two categories: global-level
assessment and per-target average assessment. The global level
assessment puts together the predicted scores of all the
structural models across all targets during performance
evaluation. In contrast, the per-target average assessment
evaluates the predictions for each target’s structures separately
against their corresponding ground truths and then averages
the results over all the targets. Since the global level assessment
puts all the targets together to evaluate, it is important to
length-normalize the estimated scores for the methods that
predict RMSD unfitness scores. For the same reason, we
length-normalize the ground truth all-atom RMSD metric
during scoring performance evaluation. For the length
normalization of RMSD in the range of (0—1], we use the
formulation of US-align*” as follows:

dy=124YT =15 — 1.8

1
RMSD, =

. L+ ( )2 (10)

Except for lociPARSE, all the other six competing methods
evaluated in this work estimate some form of structural
unfitness score with a lower value representing better structural
quality. ARES and RNA3DCNN estimate RMSD, whereas the
four other knowledge-based statistical potentials estimate the
potential energy of an RNA structural model. To ensure that
the estimated scores from all competing methods are

RMSD
dy
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comparable, we length-normalize the predicted RMSD of
ARES and RNA3DCNN using eq 10 that maps the predictions
between (0—1] with higher values representing better
structural quality. For the knowledge-based statistical poten-
tials, we use min—max normalization to map the estimated
potential energy to a normalized score s between (0—1] and
use (1 — s) to recalibrate the score such that a higher value
represents better structural quality. We also length-normalize
the ground truth RMSD between (0—1] using eq 10. Our
method lociPARSE estimates the IDDT score between (0—1]
where higher values represent better structural quality.
Meanwhile, the ground truth IDDT is between (0—1] by
definition.

Our assessment metrics include both global and average per-
target Pearson’s (r), Spearman’s rank (p), and Kendall’s Tau
rank (7) correlation coefficients between the estimated score of
each method and the ground truth IDDT as well as ground
truth all-atom RMSD where a higher correlation indicates
better performance. While Pearson’s r assumes a linear
relationship between variables and is sensitive to outliers,
Spearman’s p and Kendall's 7 account for nonlinear but
monotonic trends and are less affected by outliers. Also,
Kendall’s 7 is particularly robust for small sample sizes and
many tied ranks. Therefore, reporting all three coefficients
provides a comprehensive assessment of the predicted quality
scores of different methods. Ground truth IDDT of the test set
targets are calculated using the docker version of Open-
Structure™ whereas the ground truth all-atom RMSD is
calculated using casp-rna pipeline.* All the predicted quality
scores and the ground truth metrics are normalized between
(0—1] during scoring performance evaluation. Diff, another
assessment metric is calculated at the global level as the mean
absolute difference between the structural level estimated
scores (pMoL) of all the structures of all targets and their
corresponding ground truth IDDT or RMSD metrics. Per-
target loss or top-1 loss is calculated as the absolute difference
between the ground truth IDDT or RMSD of the structural
model ranked at the top by each method and the ground truth
IDDT or RMSD of the most accurate structural model for each
target which is then averaged over all targets to get the loss
value for each method over a test set. Lower values of diff and
loss, therefore, indicate better performance. To calculate the
local nucleotide-wise scoring performance in Table S, we
accumulated all the nucleotide-wise predicted scores (pNuL)
and computed the coefficients and diff in the same manner as
in our global assessment. For RNA3DCNN, we adhered to the
method described in their work to scale the nucleotide-level
predicted RMSD in the range (0—1] before the evaluation. We
additionally performed receiver operating characteristics
(ROC) analysis using a IDDT threshold of 0.75 to separate
“good” and “bad” structural models, following.* Consequently,
the area under the ROC curve (AUC) quantifies the ability of
a scoring function to distinguish good and bad models. Finally,
an average of all assessment metrics is taken to combine the
results of all the different metrics into a single composite

quality score, called Q,, defined as

Q. = %(rg FA=D)+r+ (-1 +AUCQ)

where, 1y = global Pearson’s r, D = global diff, r, = per-target
average Pearson’s r, L = average loss, and AUC = area under
the ROC curve. We use the composite quality score for
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Table 1. Performance on 30 Independent RNA Targets Based on IDDT as the Ground Truth Metric, Sorted in Nonincreasing

Order of Global Pearson’s r”

global

method rt 1 71 diff |
lociPARSE 0.67 0.71 0.55 0.06
rsRNASP 0.5 0.5 0.36 0.11
RASP 0.46 0.5 0.36 0.16
ARES 0.43 0.48 0.34 0.55
DFIRE-RNA 0.33 0.32 0.22 0.19
cgRNASP 0.27 0.19 0.13 0.15
RNA3DCNN 0.19 0.17 0.12 0.64

“Values in bold indicate the best performance.

per-target average

AUC 1t r1 p 1 71 loss |
091 0.77 0.75 0.64 0.06
0.79 0.75 0.69 0.55 0.06
0.78 0.72 0.68 0.58 0.08
0.80 0.72 0.7 0.58 0.06
0.69 0.75 0.7 0.56 0.08
0.60 0.12 0.07 0.07 0.07
0.58 0.47 0.36 0.27 0.06

Table 2. Performance on 30 Independent RNA Targets Based on All-Atom RMSD as the Ground Truth Metric, Sorted in

Nonincreasing Order of Global Pearson’s r*

global
method r1 1T 71
lociPARSE 0.65 0.65 0.47
ARES 0.64 0.64 0.48
RASP 0.64 0.65 0.47
rsRNASP 0.63 0.65 0.47
DFIRE-RNA 0.54 0.53 0.39
cgRNASP 0.49 0.48 0.33

RNA3DCNN

“Values in bold indicate the best performance.

—0.11 —0.12 —0.07

per-target average

diff | rt p 1T 71 loss |
0.31 0.59 0.61 0.49 1.47
0.3 0.58 0.61 0.48 2.0

0.21 0.59 0.56 0.44 2.37
0.26 0.52 0.52 0.37 1.93
0.22 0.49 0.49 0.35 1.88
0.29 0.18 0.09 0.09 1.59
0.38 0.06 0.12 0.11 2.13

ablation study and hyperparameter selection, where higher
values of Q. indicate better performance.

3. RESULTS

3.1. Performance on 30 Independent RNA Targets.
The performance of our new method lociPARSE and the other
competing methods on 30 independent RNA targets in terms
of ground truth as IDDT and RMSD is reported in Tables 1
and 2, respectively. Table 1 shows that lociPARSE consistently
outperforms all other tested methods across almost all
performance criteria when IDDT is used as the ground truth
metric. For instance, lociPARSE attains the highest global
Pearson’s r of 0.67 which is much better than the second-best
rsRNAsp (0.5). The same trend continues for global
Spearman’s p (lociPARSE: 0.71 vs the second-best score of
0.5 and global Kendall’s 7 (IociPARSE: 0.55 vs the second-best
score of 0.36). Additionally, lociPARSE attains the lowest diff
of 0.06, which is lower than the second-best rsRNASP (0.11).
Furthermore, lociPARSE always delivers the highest per-target
average correlations. In terms of average IDDT loss, however,
DFIRE-RNA attains the lowest average loss (0.05). Mean-
while, lociPARSE, ARES, rsRNASP and RNA3DCNN are tied
for the second spot with a comparably low loss of 0.06. To
investigate the ability of lociPARSE to distinguish “good” and
“bad” models in comparison with the other tested methods
across all structural models for all 30 targets, we performed
receiver operating characteristics (ROC) analysis using a cutoff
of IDDT = 0.75 to differentiate “good” and “bad” models
following the CASP1S official assessment.” Meanwhile, the
area under the ROC curve (AUC) quantifies the ability of a
method to differentiate “good” and “bad” models. Table 1
shows that lociPARSE achieves the highest AUC of 0.91,
which is noticeably better than the second-best AUC of 0.8 by
ARES, demonstrating a better distinguishability aspect of our
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method. The ROC curves for all competing methods across
both test sets are provided in Supplementary Figure S6.

Since our method lociPARSE is trained to estimate the
IDDT scores, whereas methods such as ARES and
RNA3DCNN are trained to estimate the RMSD scores, to
ensure a fair performance evaluation, we perform an analogous
set of assessments using the all-atom RMSD as the ground
truth metric instead of IDDT. As reported in Table 2,
lociPARSE exhibits remarkable robustness and performance
resilience by achieving comparable correlations in both global
and per-target levels with the lowest per-target loss, even when
evaluated based on RMSD as the ground truth. To further
investigate whether each method can effectively sort and rank-
order the structures, we analyze the median IDDT and RMSD
ground truth metrics of top-1 and best of top-10 ranked
structural models from each method. As shown in Supple-
mentary Figures S1 and S2, lociPARSE achieves the highest
median top-1 IDDT score of 0.8 and the lowest median top-1
RMSD score of 1.91, demonstrating its effectiveness in
identifying the optimal structural model irrespective of the
choice of the ground truth metrics. Considering the best of
top-10 median scores, lociPARSE is only 0.01 points lower
than the highest median IDDT score and achieves the lowest
median RMSD of 1.73. In summary, the results demonstrate
that lociPARSE is effective in sorting and rank-ordering
structural models while being robust and versatile in terms of
the choice of the ground truth assessment metrics.

It is worth mentioning here that both the competing
machine learning-based scoring functions ARES and
RNA3DCNN exhibit inferior global diff values despite
attaining comparable performance in terms of per-target
averages. Meanwhile, DFIRE-RNA, the method attaining the
lowest average per-target IDDT loss, does not deliver top
performance in terms of global correlations in Table 1. That is,
there are complementary aspects of scoring and model quality
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Table 3. Performance on CASP15 RNA Targets Based on LDDT as the Ground Truth Metric, Sorted in Nonincreasing Order

of Global Pearson’s r*

global per-target average
method r1 1 71 diff | AUC 1t rt p 1 71 loss |
lociPARSE 0.74 0.72 0.55 0.12 0.96 0.73 0.66 0.52 0.07
ARES 0.33 0.35 0.25 0.27 0.78 0.55 0.53 0.42 0.13
RASP 0.33 0.42 0.3 0.17 0.80 0.55 0.54 0.42 0.17
rsRNASP 0.31 0.41 0.3 0.11 0.83 0.66 0.61 0.47 0.11
DFIRE-RNA 0.29 0.3 0.22 0.39 0.77 0.69 0.6 0.46 0.16
cgRNASP 0.29 0.32 0.24 0.12 0.80 0.59 0.5 0.37 0.11
RNA3DCNN 0 —0.01 —0.01 0.52 0.35 0.5 0.42 0.31 0.09
“Values in bold indicate the best performance.
Table 4. Performance on CASP15 RNA Targets Based on All-Atom RMSD as the Ground Truth Metric, Sorted in
Nonincreasing Order of Global Pearson’s r*
global per-target average
method rt 1 71 diff | rt p1 Tt loss |
lociPARSE 0.37 0.34 0.24 0.58 0.33 0.32 0.24 9.74
ARES 0.15 0.11 0.09 0.23 0.22 0.25 0.18 11.83
rsRNASP 0.13 0.21 0.14 0.49 0.34 0.37 0.27 14.37
cgRNASP 0.11 0.13 0.09 0.41 0.28 0.31 0.23 14.79
RASP 0.1 0.09 0.07 0.63 0.18 0.2 0.15 16.79
DFIRE-RNA 0.06 0.11 0.09 0.86 0.32 0.37 0.27 15.31
RNA3DCNN 0.01 0.04 0.03 0.05 0.19 0.15 0.11 13.39

“Values in bold indicate the best performance.

estimation that can lead to performance trade-offs. Our new
method lociPARSE strikes an ideal balance to deliver a well-
rounded RNA scoring performance across a wide range of
assessment metrics. It is interesting to note that among the
other tested methods, the two machine learning-based scoring
functions ARES and RNA3DCNN show dramatically different
performance. While ARES is comparable to the traditional
knowledge-based statistical potentials in terms of global
correlations and per-target average correlations, RNA3DCNN
exhibits poor global and per-target average correlations, which
are much lower than most knowledge-based statistical
potentials. A similar trend can be observed between rsRNASP
and its coarse-grained counterpart cgRNASP, where rsRNASP
consistently attains good global and per-target average
correlations but cgRNASP falls short. That is, subtle
methodological differences such as the granularity of RNA
conformational space representation or the choice of the
neural network architecture can lead to dramatic differences in
performance. Notably, lociPARSE exhibits remarkable robust-
ness by being resilient to the choice of the ground truth
assessment metrics or complementary aspects of scoring
performance evaluation due to various factors including our
novel use of the locality-aware IPA architecture as a general-
purpose RNA scoring function, invariant set of features, and
the invariant nature of the IDDT metric that lociPARSE is
trained to estimate, leading to high-fidelity RNA scoring
performance.

3.2. Performance on CASP15 RNA Targets. Tables 3
and 4 report the performance of lociPARSE and the other
competing methods on 12 CASP15 RNA targets based on
IDDT and all-atom RMSD as the ground truth metrics,
respectively. As shown in Table 3, the performance of
lociPARSE for the global level assessment based on IDDT as
the ground truth metric is considerably better, having the
highest global Pearson’s r of 0.74, which is much better than
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the second-best method ARES (0.33). lociPARSE is the
second-best method in terms of global diff, only slightly worse
by 0.01 points than the lowest global diff. lociPARSE also
achieves the highest AUC value of 0.96, outperforming the
second-best method rsRNASP (0.83) by a large margin,
demonstrating better distinguishability of lociPARSE in
separating “good” and “bad” models over a diverse set of
predicted structural models submitted by all CASPI1S
predictors. Furthermore, lociPARSE consistently attains higher
per-target average correlations than the other competing
methods and achieves the lowest average IDDT loss of 0.07,
which is lower than the second-best RNA3SDCNN (0.09).

Table 4 reports the full set of results based on all-atom
RMSD as the ground truth metric that the two competing
machine learning-based scoring functions, ARES and
RNA3DCNN, are trained on. lociPARSE is better than both
methods in terms of both global and per-target correlations
with the lowest average RMSD loss but exhibits comparatively
higher global diff. The global correlations of lociPARSE are
noticeably better than all competing methods and comparable
to most of the energy-based methods in terms of per-target
assessment. It is interesting to note that DFIRE-RNA, the
method attaining the lowest IDDT loss in 30 independent
RNA targets, yields a poor IDDT loss (0.16) in CASP1S. By
contrast, lociPARSE consistently attains low loss in both test
sets, indicating its ability to select the best model that
generalizes across different datasets. Supplementary Figures S1
and S2 further demonstrate that the median IDDT score of the
top-ranked structure on 12 CASP1S targets by lociPARSE is
0.69, higher than all other methods. In terms of best of top 10
predictions, lociPARSE is second-best with a median IDDT of
0.72 but jointly best in terms of median all-atom RMSD value
of 829. In summary, the results underscore the ability of
lociPARSE to consistently select high-quality structures from a
diverse pool of structural models.
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When nucleotide-wise quality is evaluated, lociPARSE is especially in the presence of irregular regions such as the loop
orders of magnitude better than RNA3DCNN, the only other in nucleotide positions (19—27). The predicted RMSD value
method except for lociPARSE that can estimate per-nucleotide by ARES is 7.8 A which is noticeably higher than the ground
score. For example, lociPARSE attains more than three times truth all-atom RMSD of 4.63 A. However, a structural level
higher global Pearson’s r, Spearman’s p, and Kendall’s 7 than unfitness score alone fails to pinpoint the problematic regions
RNA3DCNN, and achieves noticeably lower diff than that in the model contributing to the higher RMSD. In contrast,
attained by RNA3DCNN (Table 5). While in principle, the lociPARSE demonstrates its strength by accurately estimating
the quality of each nucleotide, effectively identifying the
Table 5. Nucleotide-Wise Scoring Performance on CASP1S5 incorrectly modeled loop region in nucleotide positions (19—
Set” 27) highlighted in blue. To further assess whether the learned
representation in lociPARSE is consistent with the physical
principles of RNA 3D structure, we analyze the predicted

nucleotide-wise

method 1 a A diff | attention map extracted from one of the attention heads in the
lociPARSE 0.72 0.73 0.53 0.15 final IPA layer of our trained model for this same structural
RNA3DCNN 0.17 0.19 0.13 024 model. A side-by-side comparison against the base pairing
“Values in bold indicate the best performance. information extracted from the RNA 3D structure presented in

Supplementary Figure SS shows a resemblance between the

nucleotide-wise scoring performance reported in Table 5 two maps, indicatin.g the effectiveness of the learned
should be synchronized to the structural level performance representations by lociPARSE. .

reported in Table 3 as it is the case for our method lociPARSE, 3.4. Ablatlon StUdy ar_‘d Hyperparameter Selection.
RNA3DCNN shows a discrepancy in this regard, possibly due To examine the relative importance of the features and

to inconsistencies in nucleotide-wise scoring performance. architectural hyperparameters adopted in lociPARSE, we
Overall, lociPARSE delivers stable and consistent nucleotide- conduct ablation experiments by systematically varying
wise scoring performance that translates to well-rounded individual parameters during model training using the reduced
structural level performance. training set and evaluating the accuracy of the independent

3.3. Case Study. Figure 2 shows a representative example validation set (Section 2.4). Table 6 reports the composite
of nucleotide-wise scoring performance using lociPARSE for a quality score (Q.) defined in Section 2.7 of the full-fledged
top-ranked structural model submitted by the winning group version of lociPARSE serving as a baseline and its ablated

Alchemy RNA2 (group 232) for the CASP15 target R1108 variants. The results demonstrate that all the parameters
having a length of 69. The predicted nucleotide-wise IDDT adopted in the full-fledged version of lociPARSE positively

(PNuL) scores are in close agreement with the ground truth contribute to the overall accuracy achieved by lociPARSE. For
IDDT with a high Pearson’s r of 0.89 (Figure 2a). Two local example, we notice a performance decline when we vary the
problematic regions are estimated by lociPARSE in nucleotide value of K used in the nearest neighbors for the locality
positions (19—27) and (59—63). These two local problematic computation from K = 20 used in the baseline to K € {5, 10,
regions are visually noticeable when the predicted structural 30, 40}. Furthermore, to bias the attention weights as well as to
model is aligned with the experimental structure. update scalar features, we make use of the pair features in the
The poorly modeled structural regions around the hairpin form of nucleotide-nucleotide atomic distances between all
loop in nucleotide positions (19—27) and part of the helix pairs of 3 atoms P, C4’ and N, encoded with Gaussian radial
strand in positions (5§9—63) are obvious even with simple basis functions (hereafter called pair,;). We notice a
visual inspection (Figure 2b). By contrast, virtually all significant performance drop when pair ;) features are isolated
nucleotides with high pNuL values are structurally well as well as changing the number of radial basis functions from
modeled. A comparison with ARES on this target reveals the RBF = 16 used in the baseline to RBF € {1, 2, 4, 8, 32}.
benefit of nucleotide-wise IDDT prediction as employed by Similarly, we notice consistent performance decline from the
our method over structural level RMSD prediction of ARES, baseline configuration whenever we vary the network
a b
1.0
Nucleotide position
(59-63)
0.8 J 08
0.6 o
Nucleotide position 00
0.4
021 — ppr
— pNuL
0

0 10 20 30 40 50 60 70
Nucleotide position

Figure 2. Example of lociPARSE nucleotide-wise quality estimation for the CASP1S target R1108. (a) Predicted nucleotide-wise IDDT (pNuL) vs
the ground truth IDDT for the top-ranked structural model submitted by Alchemy RNA2 (group 232). (b) Predicted structural model in rainbow
colored with color code ramping from blue to red for low to high pNuL values superimposed on the experimental structure in gray and two local
problematic regions are highlighted.
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Table 6. Validation Set Performance in Terms of Composite Quality Score (Q,) with Various Settings of Features (on the left)
and Hyperparameters (on the right) Compared to the Full-Fledged Version of lociPARSE Serving as a Baseline”

settings Q. settings RBF
baseline (K = 20 w/pairw(d>) 0.764 baseline (RBF = 16) 0.764
K = 5 w/pair,(y) 0744  RBE=1 0.72
K = 10 w/pair, ) 0762 RBF =2 0.742
K = 30 w/pair, ) 0754  RBF = 4 0.74
K =40 w/pair«,(,j) 0.756 RBF = 8 0.758
K =20 w/o pair,(y) 0.728 RBF = 32 0.754

“Values in bold indicate the best performance.

hyperparamters Q. hyperparamters Q.
baseline (L = 4, H = 4) 0.764 baseline (Q = 8, V = 4) 0.764
L=2 0.75 Q=4 0.762
L=6 0756 Q=16 0.762
H=2 0.748 V=2 0.746
H=38 0.758 V=38 0.754
Q=2 0.754 V=16 0.758

architecture such as the number of IPA layers (Njye = L) or
various IPA hyperparameters (N4 = H, Nuery points
Nyatve points = V), justifying our choice of the parameters

adopted in the full-fledged version of lociPARSE.

4. DISCUSSION

In this work, we developed lociPARSE, a locality-aware
invariant point attention model for scoring RNA 3D structures.
lociPARSE uses locality information derived from the RNA
atomic coordinates to define nucleotide-wise frames together
with its local atomic environment. This, coupled with the
invariant point attention architecture, allows for the simulta-
neous estimation of local quality in the form of predicted
nucleotide-wise IDDT (pNuL) scores which are then
aggregated over all nucleotides by taking an average to
estimate global structural correctness in the form of predicted
molecular-level IDDT (pMoL). Our empirical results demon-
strate the superiority of our method in scoring RNA 3D
structures compared to existing approaches.

Our locality-aware attention-based architecture can be
extended in several ways, including estimating other local
quality measures such as the Interaction Network Fidelity
(INF) score,*® which is a local interaction metric that captures
various types of base—base interactions in RNA. In fact, INF
and IDDT have been shown to correlate well in a near-linear
and size-independent relationship,4 suggesting that IDDT may
capture the subset of interactions measured in INF whereas
INF focuses on a selection of RNA-specific interactions. A
model with a very similar architecture as lociPARSE would
make an excellent candidate for jointly estimating INF and
IDDT, thereby capturing complementary aspects of local
quality. Further, a promising direction for future work is to
investigate the potential benefits of capturing the multistate
conformational landscape of RNA, since many RNA targets
exhibit conformational flexibility.* The IDDT score can be
computed simultaneously against multiple reference structures
of the same RNA at the same time, without arbitrarily selecting
one reference structure for the target or removing parts that
show variability. Training our model using multireference
IDDT to capture different classes of conformations will allow
our scoring function to account for conformational flexibility
and pave the way to evaluate predictions of conformational
ensembles instead of just a single structure. One limitation of
our method is that it does not account for the stereochemical
quality and physical plausibility of the model being evaluated.
This is because, unlike proteins, the currently available
implementation of IDDT for RNA does not penalize
stereochemical violations. Using a customized version of
IDDT that incorporates stereochemical quality checks in its
calculation can address such limitations, and this aspect
remains an important future direction.
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